Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2017, Article ID 3501903, 8 pages
https://doi.org/10.1155/2017/3501903
Research Article

Physical Properties Investigation of Reduced Graphene Oxide Thin Films Prepared by Material Inkjet Printing

1Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
2Institute of Physics, Academy of Sciences Czech Republic v. v. i., Na Slovance 2, 182 21 Prague 8, Czech Republic
3Danubia NanoTech, s.r.o., Ilkovicova 3, 841 04 Bratislava, Slovakia

Correspondence should be addressed to Veronika Schmiedova; zc.tuv.hcf@avodeimhcscx

Received 23 March 2017; Revised 12 July 2017; Accepted 19 July 2017; Published 23 August 2017

Academic Editor: Zainovia Lockman

Copyright © 2017 Veronika Schmiedova et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. I. Katsnelson, “Graphene: carbon in two dimensions,” Materials Today, vol. 10, no. 1-2, pp. 20–27, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Reviews of Modern Physics, vol. 81, no. 1, pp. 109–162, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. D. A. Abanin, K. S. Novoselov, U. Zeitler, P. A. Lee, A. K. Geim, and L. S. Levitov, “Dissipative quantum hall effect in graphene near the dirac point,” Physical Review Letters, vol. 98, no. 19, Article ID 196806, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. D. A. Abanin, P. A. Lee, and L. S. Levitov, “Spin-filtered edge states and quantum hall effect in graphene,” Physical Review Letters, vol. 96, no. 17, Article ID 176803, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. W. Choi, I. Lahiri, R. Seelaboyina, and Y. S. Kang, “Synthesis of graphene and its applications: a review,” Critical Reviews in Solid State and Materials Sciences, vol. 35, no. 1, pp. 52–71, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. K. S. Novoselov, A. K. Geim, S. V. Morozov et al., “Electric field in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666–669, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Zhu, S. Murali, W. Cai et al., “Graphene and graphene oxide: synthesis, properties, and applications,” Advanced Materials, vol. 22, no. 35, pp. 3906–3924, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Bablich, S. Kataria, and M. C. Lemme, “Graphene and two-dimensional materials for optoelectronic applications,” Electronics (Switzerland), vol. 5, no. 1, article no. 13, 2016. View at Publisher · View at Google Scholar · View at Scopus
  9. R. R. Nair, P. Blake, A. N. Grigorenko et al., “Fine structure constant defines visual transparency of graphene,” Science, vol. 320, no. 5881, p. 1308, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. V. G. Kravets, A. N. Grigorenko, R. R. Nair et al., “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Physical Review B, vol. 81, no. 15, Article ID 155413, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Dai, “Functionalization of graphene for efficient energy conversion and storage,” Accounts of Chemical Research, vol. 46, no. 1, pp. 31–42, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Park and R. S. Ruoff, “Chemical methods for the production of graphenes,” Nature nanotechnology, vol. 4, no. 4, pp. 217–224, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Yang, Y. Zhou, L. Sun, N. Zhao, C. Zang, and X. Cheng, “Synthesis, characterization and optical property of graphene oxide films,” Applied Surface Science, vol. 258, no. 12, pp. 5056–5060, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature, vol. 428, no. 6986, pp. 911–918, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. J. M. Xu, “Plastic electronics and future trends in microelectronics,” Synthetic Metals, vol. 115, no. 1, pp. 1–3, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chemical Society Reviews, vol. 39, no. 1, pp. 228–240, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. K. J. Tielrooij, J. C. W. Song, S. A. Jensen et al., “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nature Physics, vol. 9, no. 4, pp. 248–252, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Jo, M. Choe, S. Lee, W. Park, Y. H. Kahng, and T. Lee, “The application of graphene as electrodes in electrical and optical devices,” Nanotechnology, vol. 23, no. 11, Article ID 112001, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Kopidakis, I. N. Remediakis, M. G. Fyta, and P. C. Kelires, “Atomic and electronic structure of crystalline-amorphous carbon interfaces,” Diamond and Related Materials, vol. 16, no. 10, pp. 1875–1881, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. Q. Zheng, Z. Li, J. Yang, and J.-K. Kim, “Graphene oxide-based transparent conductive films,” Progress in Materials Science, vol. 64, pp. 200–247, 2014. View at Publisher · View at Google Scholar · View at Scopus
  21. H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano, vol. 2, no. 3, pp. 463–470, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. R. K. Singh, R. Kumar, and D. P. Singh, “Graphene oxide: strategies for synthesis, reduction and frontier applications,” RSC Advances, vol. 6, no. 69, pp. 64993–65011, 2016. View at Publisher · View at Google Scholar · View at Scopus
  23. A. C. Faucett, J. N. Flournoy, J. S. Mehta, and J. M. Mativetsky, “Evolution, structure, and electrical performance of voltage-reduced graphene oxide,” FlatChem, vol. 1, pp. 42–51, 2017. View at Publisher · View at Google Scholar · View at Scopus
  24. S. F. Pei and H.-M. Cheng, “The reduction of graphene oxide,” Carbon, vol. 50, no. 9, pp. 3210–3228, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. M. J. Fernández-Merino, L. Guardia, J. I. Paredes et al., “Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions,” Journal of Physical Chemistry C, vol. 114, no. 14, pp. 6426–6432, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Giuri, S. Rella, C. Malitesta et al., “Synthesis of reduced graphite oxide by a novel green process based on UV light irradiation,” Science of Advanced Materials, vol. 7, no. 11, pp. 2445–2451, 2015. View at Publisher · View at Google Scholar · View at Scopus
  27. X. Wan, G. Long, L. Huang, and Y. Chen, “Graphene—a promising material for organic photovoltaic cells,” Advanced Materials, vol. 23, no. 45, pp. 5342–5358, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Venugopal, K. Krishnamoorthy, R. Mohan, and S.-J. Kim, “An investigation of the electrical transport properties of graphene-oxide thin films,” Materials Chemistry and Physics, vol. 132, no. 1, pp. 29–33, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. Q. V. Lea, J.-Y. Choib, and S. Y. Kim, “Recent advances in the application of two-dimensional materials as charge transport layers in organic and perovskite solar cells,” FlatChem, vol. 2, pp. 54–66, 2017. View at Publisher · View at Google Scholar
  30. L. Sygellou, G. Paterakis, C. Galiotis, and D. Tasis, “Work function tuning of reduced graphene oxide thin films,” Journal of Physical Chemistry C, vol. 120, no. 1, pp. 281–290, 2016. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Søndergaard, M. Hösel, D. Angmo, T. T. Larsen-Olsen, and F. C. Krebs, “Roll-to-roll fabrication of polymer solar cells,” Materials Today, vol. 15, no. 1-2, pp. 36–49, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. J. T. Han, J. S. Kim, D. Kwak et al., “Transparent carbon nanotube patterns templated by inkjet-printed graphene oxide nanosheets,” RSC Advances, vol. 1, no. 1, pp. 44–47, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. A. R. Forouhi and I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Physical Review B, vol. 34, no. 10, pp. 7018–7026, 1986. View at Publisher · View at Google Scholar · View at Scopus
  34. A. R. Forouhi and I. Bloomer, “Optical properties of crystalline semiconductors and dielectrics,” Physical Review B, vol. 38, no. 3, pp. 1865–1874, 1988. View at Publisher · View at Google Scholar · View at Scopus
  35. G. E. Jellison Jr. and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Applied Physics Letters, vol. 69, no. 3, pp. 371–373, 1996. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Shang, L. Ma, J. Li, W. Ai, T. Yu, and G. G. Gurzadyan, “The origin of fluorescence from graphene oxide,” Scientific Reports, vol. 2, article no. 792, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. V. Schmiedova, J. Pospisil, O. Zmeskal, and V. Vretenar, “Optical characterization of graphene oxide films by spectroscopic ellipsometry,” Materials Science Forum, vol. 851, pp. 199–204, 2016. View at Publisher · View at Google Scholar · View at Scopus
  38. Q. Mei, J. Chen, J. Zhao et al., “Atomic Oxygen Tailored Graphene Oxide Nanosheets Emissions for Multicolor Cellular Imaging,” ACS Applied Materials and Interfaces, vol. 8, no. 11, pp. 7390–7395, 2016. View at Publisher · View at Google Scholar · View at Scopus
  39. Y. Wang, D. C. Alsmeyer, and R. L. McCreery, “Raman spectroscopy of carbon materials: Structural basis of observed spectra,” Chemistry of Materials, vol. 2, no. 5, pp. 557–563, 1990. View at Publisher · View at Google Scholar · View at Scopus
  40. L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Physics Reports, vol. 473, pp. 51–87, 2009. View at Publisher · View at Google Scholar
  41. V. Schmiedova, P. Heinrichova, O. Zmeskal, and M. Weiter, “Characterization of polymeric thin films for photovoltaic applications by spectroscopic ellipsometry,” Applied Surface Science, vol. 349, pp. 582–588, 2015. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Shen, P. Zhou, Q. Q. Sun et al., “Optical investigation of reduced graphene oxide by spectroscopic ellipsometry and the band-gap tuning,” Applied Physics Letters, vol. 99, no. 14, Article ID 141911, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. J. B. Wu, H. A. Becerril, Z. N. Bao, Z. F. Liu, Y. S. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Applied Physics Letters, vol. 92, no. 26, pp. 263302-263303, 2008. View at Publisher · View at Google Scholar
  44. X. Liu, H. Kim, and L. J. Guo, “Optimization of thermally reduced graphene oxide for an efficient hole transport layer in polymer solar cells,” Organic Electronics: physics, materials, applications, vol. 14, no. 2, pp. 591–598, 2013. View at Publisher · View at Google Scholar · View at Scopus