Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2017 (2017), Article ID 5046076, 6 pages
https://doi.org/10.1155/2017/5046076
Research Article

Influence of the Distance between Nanoparticles in Clusters on the Magnetization Reversal Process

1Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, Interaktion 1, 33619 Bielefeld, Germany
2Institute of Physics-Center for Science and Education, Silesian University of Technology, Ul. Konarskiego 22B, 44-100 Gliwice, Poland

Correspondence should be addressed to Andrea Ehrmann

Received 27 March 2017; Accepted 12 July 2017; Published 20 August 2017

Academic Editor: Anil Annadi

Copyright © 2017 Andrea Ehrmann and Tomasz Blachowicz. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Vogler, F. Bruckner, M. Fuger et al., “Three-dimensional magneto-resistive random access memory devices based on resonant spin-polarized alternating currents,” Journal of Applied Physics, vol. 109, no. 12, article 123901, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. U. Roy, H. Seinige, F. Ferdousi, J. Mantey, M. Tsoi, and S. K. Banerjee, “Spin-transfer-torque switching in spin valve structures with perpendicular, canted, and in-plane magnetic anisotropies,” Journal of Applied Physics, vol. 111, no. 7, article 07C913, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Yoon, Y. Jang, Ch. Nam et al., “Sensitivity enhancement of a giant magnetoresistance alternating spin-valve sensor for high-field applications,” Journal of Applied Physics, vol. 111, article 07E504, 2012. View at Google Scholar
  4. J. Åkerman, “Toward a universal memory,” Science, vol. 308, no. 5721, pp. 508–510, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Blachowicz and A. Ehrmann, “Fourfold nanosystems for quaternary storage devices,” Journal of Applied Physics, vol. 110, no. 7, article 073911, 2011. View at Google Scholar
  6. W. Zhang and S. Haas, “Phase diagram of magnetization reversal processes in nanorings,” Physical Review B, vol. 81, article 064433, 2010. View at Google Scholar
  7. R.-H. Wang, J.-S. Jiang, and M. Hu, “Metallic cobalt microcrystals with flowerlike architectures: synthesis, growth mechanism and magnetic properties,” Materials Research Bulletin, vol. 44, no. 7, p. 1468, 2009. View at Publisher · View at Google Scholar
  8. L. Thevenard, H. T. Zeng, D. Petit, and R. P. Cowburn, “Macrospin limit and configurational anisotropy in nanoscale permalloy triangles,” Journal of Magnetism and Magnetic Materials, vol. 322, no. 15, pp. 2152–2156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Huang, M. A. Schofield, and Y. Zhu, “Control of double-vortex domain configurations in a shape-engineered trilayer nanomagnet system,” Advanced Materials, vol. 22, article 492, 2010. View at Google Scholar
  10. J. Moritz, G. Vinai, S. Auffret, and B. Dieny, “Two-bit-per-dot patterned media combining in-plane and perpendicular-to-plane magnetized thin films,” Journal of Applied Physics, vol. 109, article 083902, 2011. View at Google Scholar
  11. R. A. Escobar, S. Castillo-Sepulveda, S. Allende et al., “Towards independent behavior of magnetic slabs,” IEEE Magnetics Letters, vol. 8, pp. 1–5, 2017. View at Publisher · View at Google Scholar
  12. D. Salazar-Aravena, J. L. Palma, and J. Escrig, “Magnetostatic interactions between wire-tube nanostructures,” Journal of Applied Physics, vol. 117, no. 19, article 193905, 2015. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Van De Wiele, S. Fin, A. Sarella, P. Vavassori, and D. Bisero, “How finite sample dimensions affect the reversal process of magnetic dot arrays,” Applied Physics Letters, vol. 105, no. 16, article 162407, 2014. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Ehrmann and T. Blachowicz, “Interaction between magnetic nanoparticles in clusters,” AIMS Materials Science, vol. 4, pp. 383–390, 2017. View at Publisher · View at Google Scholar
  15. M. J. Donahue and D. G. Porter, “OOMMF Users Guide, Version 1.0,” Interagency Report NISTIR 6376, National Institute of Standards and Technology, Gaithersburg, MD, USA, 1999. View at Google Scholar
  16. T. L. Gilbert, “A phenomenological theory of damping in ferromagnetic materials,” IEEE Transactions on Magnetics, vol. 40, no. 6, pp. 3443–3449, 2004. View at Publisher · View at Google Scholar
  17. A. Ehrmann and T. Blachowicz, “Influence of shape and dimension on magnetic anisotropies and magnetization reversal of Py, Fe, and Co nano-objects with four-fold symmetry,” AIP Advances, vol. 5, no. 9, article 097109, 2015. View at Publisher · View at Google Scholar
  18. E. F. Kneller and R. Hawig, “The exchange-spring magnet: a new material principle for permanent magnets,” IEEE Transactions on Magnetics, vol. 27, no. 4, pp. 3588–3600, 1991. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Ehrmann, T. Blachowicz, S. Komraus et al., “Magnetic properties of square Py nanowires: irradiation dose and geometry dependence,” Journal of Applied Physics, vol. 117, no. 17, Article ID 173903, 2015. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Ehrmann, S. Komraus, T. Blachowicz et al., “Pseudo exchange bias due to rotational anisotropy,” Journal of Magnetism and Magnetic Materials, vol. 412, pp. 7–10, 2016. View at Publisher · View at Google Scholar · View at Scopus
  21. T. O. Omotehinwa and S. O. Ramon, “Fibonacci numbers and golden ratio in mathematics and science,” International Journal of Computer and Information Technology, vol. 2, no. 4, article 630, 2013. View at Google Scholar