Table of Contents Author Guidelines Submit a Manuscript
Corrigendum

A corrigendum for this article has been published. To view the corrigendum, please click here.

Journal of Nanomaterials
Volume 2018, Article ID 4076960, 6 pages
https://doi.org/10.1155/2018/4076960
Research Article

Novel Nanofluid Based on Water-Loaded Delafossite CuAlO2 Nanowires: Structural and Thermal Properties

Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Correspondence should be addressed to H. Alhummiany; as.ude.uak@ynaimmuhlah

Received 22 November 2017; Revised 6 March 2018; Accepted 28 March 2018; Published 8 May 2018

Academic Editor: Yuxiang Ni

Copyright © 2018 H. Alhummiany. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Saidur, K. Y. Leong, and H. A. Mohammad, “A review on applications and challenges of nanofluids,” Renewable & Sustainable Energy Reviews, vol. 15, no. 3, pp. 1646–1668, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. W. Yu and H. Xie, “A review on nanofluids: preparation, stability mechanisms, and applications,” Journal of Nanomaterials, vol. 2012, Article ID 435873, 17 pages, 2012. View at Publisher · View at Google Scholar
  3. S. U. S. Choi and J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, USA, 1995.
  4. D. Y. Tzou, “Thermal instability of nanofluids in natural convection,” International Journal of Heat and Mass Transfer, vol. 51, no. 11-12, pp. 2967–2979, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Ghadimi, R. Saidur, and H. S. C. Metselaar, “A review of nanofluid stability properties and characterization in stationary conditions,” International Journal of Heat and Mass Transfer, vol. 54, no. 17-18, pp. 4051–4068, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Li, J. Zhou, S. Tung, E. Schneider, and S. Xi, “A review on development of nanofluid preparation and characterization,” Powder Technology, vol. 196, no. 2, pp. 89–101, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. T. S. Chew, R. Daik, and M. A. A. Hamid, “Thermal conductivity and specific heat capacity of dodecylbenzenesulfonic acid-doped polyaniline particles-water based nanofluid,” Polymer Journal, vol. 7, no. 7, pp. 1221–1231, 2015. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Lu, T. Nozue, N. Feng, K. Sagara, H. Yoshida, and Y. Jin, “Fabrication of thermoelectric CuAlO2 and performance enhancement by high density,” Journal of Alloys and Compounds, vol. 650, Article ID 35007, pp. 558–563, 2015. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Ahmed, C. K. Blakely, J. Prakash et al., “Scalable synthesis of delafossite CuAlO2 nanoparticles for p-type dye-sensitized solar cells applications,” Journal of Alloys and Compounds, vol. 591, pp. 275–279, 2014. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Ahmad, T. Jagadale, V. Dhas et al., “Fungus-based synthesis of chemically difficult-to-synthesize multifunctional nanoparticles of CUAIO2,” Advanced Materials, vol. 19, no. 20, pp. 3295–3299, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Mo and Y. Liu, “Synthesis and properties of delafossite CuAlO2 nanowires,” Journal of Sol-Gel Science and Technology, vol. 57, no. 1, pp. 16–19, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Al-Hazmi, F. Alnowaiser, A. A. Al-Ghamdi, M. M. Aly, R. M. Al-Tuwirqi, and F. El-Tantawy, “A new large—scale synthesis of magnesium oxide nanowires: structural and antibacterial properties,” Superlattices and Microstructures, vol. 52, no. 2, pp. 200–209, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Guo, T. Zhang, D. Zhang, and Q. Wang, “Experimental investigation of thermal and electrical conductivity of silicon oxide nanofluids in ethylene glycol/water mixture,” International Journal of Heat and Mass Transfer, vol. 117, pp. 280–286, 2018. View at Publisher · View at Google Scholar · View at Scopus
  14. S. P. Jang and S. U. S. Choi, “Role of Brownian motion in the enhanced thermal conductivity of nanofluids,” Applied Physics Letters, vol. 84, no. 21, pp. 4316–4318, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. T. V. Thu, P. D. Thanh, K. Suekuni et al., “Synthesis of delafossite CuAlO2 p-type semiconductor with a nanoparticle-based Cu(I) acetate-loaded boehmite precursor,” Materials Research Bulletin, vol. 46, no. 11, pp. 1819–1827, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Akyildiz, “Synthesis of CuAlO2 from chemically precipitated nano-sized precursors,” Ceramics International, vol. 41, no. 10, pp. 14108–14115, 2015. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Drelich, J. Laskowski, and K. L. Mittal, Apparent and Microscopic Contact Angles, 2000.
  18. W. Xian-Ju and L. Xin-Fang, “Influence of pH on nanofluids' viscosity and thermal conductivity,” Chinese Physics Letters, vol. 26, no. 5, p. 056601, 2009. View at Publisher · View at Google Scholar
  19. D. Lee, J.-W. Kim, and B. G. Kim, “A new parameter to control heat transport in nanofluids: Surface charge state of the particle in suspension,” The Journal of Physical Chemistry B, vol. 110, no. 9, pp. 4323–4328, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. A. K. Nayak, R. K. Singh, and P. P. Kulkarni, “Measurement of volumetric thermal expansion coefficient of various nanofluids,” Technical Physics Letters, vol. 36, no. 8, pp. 696–698, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. E. K. Goharshadi, H. Azizi-Toupkanloo, and M. Karimi, “Electrical conductivity of water-based palladium nanofluids,” Microfluidics and Nanofluidics, vol. 18, no. 4, pp. 667–672, 2015. View at Publisher · View at Google Scholar · View at Scopus
  22. H. E. Ahmed, M. I. Ahmed, and M. Z. Yusoff, “Heat transfer enhancement in a triangular duct using compound nanofluids and turbulators,” Applied Thermal Engineering, vol. 91, pp. 191–201, 2015. View at Publisher · View at Google Scholar · View at Scopus