Research Article

The Effect of Molar Ratios of Ti/Si on Core-Shell SiO2@TiO2 Nanoparticles for Photocatalytic Applications

Table 3

A comparison of TiO2-SiO2 composites for photodegradation of phenol and MB.

PhotocatalystSynthesis methodLight sourceInitial concentration of substrate (mg/L)Concentration of photocatalysis (g/L)Reaction time (min)Efficiency (%)Ref.

TiO2-SiO2 photocatalystSol-gelUV light (150 W)50 (phenol)112048[36]
Titania-silica compositesNonaqueous approachUV light (8 W)100 (phenol)318067[37]
TiO2-SiO2 catalystsHomogeneous precipitation methodUV light (125 W)500 (phenol)2.5640100[38]
TiO2-SiO2 aerogelsSol-gel methodUV light (15 W)50 (phenol)118042[39]
CSTNsHydrothermal methodUV light (500 W)20 (phenol)0.2512099.4This paper
TiO2/SiO2 nanoparticlesHydrothermal methodUV light (30 W)10 (MB)13596.4[40]
Titania-modified mesoporous silicatesImpregnation methodUV light (400 W)10 (MB)124096.0[41]
Silica–titania mixed oxidesSol-gel methodXenon lamp (0.68 W/m2) mol/L (MB)1218095[42]
TiO2-SiO2 mesoporous materialsHydrothermal methodUV light (125 W)40 (MB)0.311065[43]
Silica–titania photocatalystsHydrothermal methodUV light (125 W)20 (MB)536090[44]
SiO2/TiO2 nanoparticlesSol-gel methodXenon lamp (300 W)10 (MB)18097.7[45]
TiO2-SiO2 mixed oxidesSol-gel methodUV light (39 W) mol/L (MB)0.312076.7[46]
TiO2/SiO2 compositesSol-gel methodXenon lamp (300 W) mol/L (MB)0.36098[47]
CSTNsHydrothermal methodUV light (500 W)20 (MB)0.2512099.2This paper