Table of Contents Author Guidelines Submit a Manuscript
Journal of Nutrition and Metabolism
Volume 2010, Article ID 167162, 8 pages
Research Article

Renal Dysfunction, Metabolic Syndrome and Cardiovascular Disease Mortality

Department of Medicine, Charles Drew University of Medicine and Science, 1731 E 20th Street, Los Angeles, CA 90059, USA

Received 26 August 2009; Accepted 21 January 2010

Academic Editor: Maria Luz Fernandez

Copyright © 2010 David Martins et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Background. Renal disease is commonly described as a complication of metabolic syndrome (MetS) but some recent studies suggest that Chronic Kidney disease (CKD) may actually antecede MetS. Few studies have explored the predictive utility of co-clustering CKD with MetS for cardiovascular disease (CVD) mortality. Methods. Data from a nationally representative sample of United States adults (NHANES) was utilized. A sample of 13115 non-pregnant individuals aged 3 5 years, with available follow-up mortality assessment was selected. Multivariable Cox Proportional hazard regression analysis techniques explored the relationship between co-clustered CKD, MetS and CVD mortality. Bayesian analysis techniques tested the predictive accuracy for CVD Mortality of two models using co-clustered MetS and CKD and MetS alone. Results. Co-clustering early and late CKD respectively resulted in statistically significant higher hazard for CVD mortality (HR = 1.80, CI = 1.45–2.23, and HR = 3.23, CI = 2.56–3.70) when compared with individuals with no MetS and no CKD. A model with early CKD and MetS has a higher predictive accuracy (72.0% versus 67.6%), area under the ROC (0.74 versus 0.66), and Cohen's kappa (0.38 versus 0.21) than that with MetS alone. Conclusion. The study findings suggest that the co-clustering of early CKD with MetS increases the accuracy of risk prediction for CVD mortality.