Table of Contents Author Guidelines Submit a Manuscript
Journal of Nutrition and Metabolism
Volume 2012 (2012), Article ID 127452, 7 pages
http://dx.doi.org/10.1155/2012/127452
Review Article

Developmental Origins of Type 2 Diabetes in Aboriginal Youth in Canada: It Is More Than Diet and Exercise

1Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada R3E 0Z2
2Section of Endocrinology and Metabolism, Department of Pediatrics, University of Manitoba, Winnipeg, MB, Canada R3E 0Z2

Received 4 July 2011; Accepted 15 November 2011

Academic Editor: Tommy Cederholm

Copyright © 2012 Kyle Millar and Heather J. Dean. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. J. Dean, R. L. Mundy, and M. Moffatt, “Non-insulin-dependent diabetes mellitus in Indian children in Manitoba,” CMAJ, vol. 147, no. 1, pp. 52–57, 1992. View at Google Scholar · View at Scopus
  2. E. A. C. Sellers, B. Triggs-Raine, C. Rockman-Greenberg, and H. J. Dean, “The prevalence of the HNF-1α G319S mutation in Canadian aboriginal youth with type 2 diabetes,” Diabetes Care, vol. 25, no. 12, pp. 2202–2206, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Mendelson, J. Cloutier, L. Spence, E. Sellers, S. Taback, and H. Dean, “Obesity and type 2 diabetes mellitus in a birth cohort of First Nation children born to mothers with pediatric-onset type 2 diabetes,” Pediatric Diabetes, vol. 12, no. 3, part 2, pp. 219–228, 2011. View at Publisher · View at Google Scholar
  4. P. D. Gluckman, M. A. Hanson, C. Cooper, and K. L. Thornburg, “Effect of in utero and early-life conditions on adult health and disease,” The New England Journal of Medicine, vol. 359, no. 1, pp. 6–73, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Amed, H. J. Dean, C. Panagiotopoulos et al., “Type 2 diabetes, medication-induced diabetes, and monogenic diabetes in Canadian children: a prospective national surveillance study,” Diabetes Care, vol. 33, no. 4, pp. 786–791, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. S. B. Harris, J. Gittelsohn, A. Hanley et al., “The prevalence of NIDDM and associated risk factors in native Canadians,” Diabetes Care, vol. 20, no. 2, pp. 185–187, 1997. View at Google Scholar · View at Scopus
  7. R. A. Hegele, H. Cao, S. B. Harris, A. J. G. Hanley, and B. Zinman, “The hepatic nuclear factor-1α G319S variant is associated with early-onset type 2 diabetes in Canadian Oji-Cree,” Journal of Clinical Endocrinology and Metabolism, vol. 84, no. 3, pp. 1077–1082, 1999. View at Google Scholar · View at Scopus
  8. S. B. Harris, “Canadian Diabetes Association 2008 clinical practice guidelines for the prevention and management of diabetes in Canada,” Canadian Journal of Diabetes, vol. 32, supplement 1, pp. S1–S201, 2008. View at Google Scholar
  9. Highlights 2006-2007: Inpatient Hospitalizations and Emergency Department Visits, Canadian Institute for Health Information, Ottawa, Canada, 2007.
  10. E. A. Sellers, K. Moore, and H. J. Dean, “Clinical management of type 2 diabetes in indigenous youth,” Pediatric Clinics of North America, vol. 56, no. 6, pp. 1441–1459, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. “Aboriginal peoples in Canada in 2006: inuit, Métis and first nations, 2006 Census,” in Statistics Canada, Statistics Canada, Ottawa, Canada, 2006.
  12. H. J. Dean, T. K. Young, B. Flett, and P. Wood-Steiman, “Screening for type-2 diabetes in aboriginal children in northern Canada,” The Lancet, vol. 352, no. 9139, pp. 1523–1524, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. DER-CA Annual Report, 2010.
  14. “Population reporting aboriginal identity according to their percentage of the total population, Canada, provinces and territories, 2001 Census,” in Statistics Canada, Statistics Canada, Ottawa, Canada, 2001.
  15. M. Pontoglio, S. Sreenan, M. Roe et al., “Defective insulin secretion in hepatocyte nuclear factor 1α-deficient mice,” The Journal of Clinical Investigation, vol. 101, no. 10, pp. 2215–2222, 1998. View at Google Scholar · View at Scopus
  16. B. L. Triggs-Raine, R. D. Kirkpatrick, S. L. Kelly et al., “HNF-1α G319S, a transactivation-deficient mutant, is associated with altered dynamics of diabetes onset in an Oji-Cree community,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 7, pp. 4614–4619, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. L. W. Harries, M. J. Sloman, E. A. C. Sellers, A. T. Hattersley, and S. Ellard, “Diabetes susceptibility in the canadian Oji-Cree population is moderated by abnormal mRNA processing of HNF1A G319S transcripts,” Diabetes, vol. 57, no. 7, pp. 1978–1982, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Arslanian and C. Suprasongsin, “Insulin sensitivity, lipids, and body composition in childhood: is “Syndrome X” present?” Journal of Clinical Endocrinology and Metabolism, vol. 81, no. 3, pp. 1058–1062, 1996. View at Google Scholar · View at Scopus
  19. M. Shields, “Overweight and obesity among children and youth,” Health Reports, vol. 17, no. 3, pp. 27–42, 2006. View at Google Scholar · View at Scopus
  20. A. J. G. Hanley, S. B. Harris, J. Gittelsohn, T. M. S. Wolever, B. Saksvig, and B. Zinman, “Overweight among children and adolescents in a Native Canadian community: prevalence and associated factors,” American Journal of Clinical Nutrition, vol. 71, no. 3, pp. 693–700, 2000. View at Google Scholar · View at Scopus
  21. T. Kue Young, “Are subarctic Indians undergoing the epidemiologic transition,” Social Science and Medicine, vol. 26, no. 6, pp. 659–671, 1988. View at Google Scholar · View at Scopus
  22. J. Gittelsohn, T. M. S. Wolever, S. B. Harris, R. Harris-Giraldo, A. J. G. Hanley, and B. Zinman, “Specific patterns of food consumption and preparation are associated with diabetes and obesity in a Native Canadian community,” Journal of Nutrition, vol. 128, no. 3, pp. 541–547, 1998. View at Google Scholar · View at Scopus
  23. T. M. S. Wolever, S. Hamad, J. Gittelsohn et al., “Low dietary fiber and high protein intakes associated with newly diagnosed diabetes in a remote aboriginal community,” American Journal of Clinical Nutrition, vol. 66, no. 6, pp. 1470–1474, 1997. View at Google Scholar · View at Scopus
  24. L. Wang, A. R. Folsom, Z. J. Zheng, J. S. Pankow, and J. H. Eckfeldt, “Plasma fatty acid composition and incidence of diabetes in middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) Study 1-3,” American Journal of Clinical Nutrition, vol. 78, no. 1, pp. 91–98, 2003. View at Google Scholar · View at Scopus
  25. D. P. DiMeglio and R. D. Mattes, “Liquid versus solid carbohydrate: effects on food intake and body weight,” International Journal of Obesity, vol. 24, no. 6, pp. 794–800, 2000. View at Google Scholar
  26. R. D. Mattes, “Dietary compensation by humans for supplemental energy provided as ethanol or carbohydrate in fluids,” Physiology and Behavior, vol. 59, no. 1, pp. 179–187, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. M. B. Schulze, S. Liu, E. B. Rimm, J. E. Manson, W. C. Willett, and F. B. Hu, “Glycemic index, glycemic load, and dietary fiber intake and incidence of type 2 diabetes in younger and middle-aged women,” American Journal of Clinical Nutrition, vol. 80, no. 2, pp. 348–356, 2004. View at Google Scholar · View at Scopus
  28. G. Q. Shaibi, M. S. Faulkner, M. J. Weigensberg, C. Fritschi, and M. I. Goran, “Cardiorespiratory fitness and physical activity in youth with type 2 diabetes,” Pediatric Diabetes, vol. 9, no. 5, pp. 460–463, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. D. J. Petitt, H. B. Baird, and K. A. Aleck, “Excessive obesity in offspring of Pima Indian women with diabetes during pregnancy,” The New England Journal of Medicine, vol. 308, no. 5, pp. 242–245, 1983. View at Google Scholar
  30. B. L. Silverman, B. E. Metzger, N. H. Cho, and C. A. Loeb, “Impaired glucose tolerance in adolescent offspring of diabetic mothers: relationship to fetal hyperinsulinism,” Diabetes Care, vol. 18, no. 5, pp. 611–617, 1995. View at Google Scholar · View at Scopus
  31. D. J. Pettitt, K. A. Aleck, H. R. Baird, M. J. Carraher, P. H. Bennett, and W. C. Knowler, “Congenital susceptibility to NIDDM. Role of intrauterine environment,” Diabetes, vol. 37, no. 5, pp. 622–628, 1988. View at Google Scholar · View at Scopus
  32. D. J. Pettitt, J. M. Lawrence, J. Beyer et al., “Association between maternal diabetes in utero and age at offspring's diagnosis of type 2 diabetes,” Diabetes Care, vol. 31, no. 11, pp. 2126–2130, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. R. T. Erasmus, E. Blanco Blanco, A. B. Okesina, J. Mesa Arana, Z. Gqweta, and T. Matsha, “Importance of family history in type 2 black South African diabetic patients,” Postgraduate Medical Journal, vol. 77, no. 907, pp. 323–325, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. C. A. Young, S. Kumar, M. J. Young, and A. J. M. Boulton, “Excess maternal history of diabetes in Caucasian and Afro-origin non-insulin-dependent diabetic patients suggests dominant maternal factors in disease transmission,” Diabetes Research and Clinical Practice, vol. 28, no. 1, pp. 47–49, 1995. View at Publisher · View at Google Scholar · View at Scopus
  35. S. N. T. De Silva, N. Weerasuriya, N. M. W. De Alwis, M. W. A. De Silva, and D. J. S. Fernando, “Excess maternal transmission and familial aggregation of Type 2 diabetes in Sri Lanka,” Diabetes Research and Clinical Practice, vol. 58, no. 3, pp. 173–177, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. A. J. Karter, S. E. Rowell, L. M. Ackerson et al., “Excess maternal transmission of type 2 diabetes: the Northern California Kaiser Permanente Diabetes Registry,” Diabetes Care, vol. 22, no. 6, pp. 938–943, 1999. View at Publisher · View at Google Scholar · View at Scopus
  37. I. Arfa, A. Abid, D. Malouche et al., “Familial aggregation and excess maternal transmission of type 2 diabetes in Tunisia,” Postgraduate Medical Journal, vol. 83, no. 979, pp. 348–351, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. F. Thomas, B. Balkau, F. Vauzelle-Kervroedan et al., “Maternal effect and familial aggregation in NIDDM: the CODIAB study,” Diabetes, vol. 43, no. 1, pp. 63–67, 1994. View at Google Scholar · View at Scopus
  39. T. Kasperska-Czyzyk, K. Jedynasty, R. R. Bowsher et al., “Difference in the influence of maternal and paternal NIDDM on pancreatic beta-cell activity and blood lipids in normoglycaemic non-diabetic adult offspring,” Diabetologia, vol. 39, no. 7, pp. 831–837, 1996. View at Publisher · View at Google Scholar · View at Scopus
  40. D. Dabelea, R. L. Hanson, P. H. Bennett, J. Roumain, W. C. Knowler, and D. J. Pettitt, “Increasing prevalence of type II diabetes in American Indian children,” Diabetologia, vol. 41, no. 8, pp. 904–910, 1998. View at Publisher · View at Google Scholar · View at Scopus
  41. D. Dabelea, R. L. Hanson, R. S. Lindsay et al., “Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: a Study of Discordant Sibships,” Diabetes, vol. 49, no. 12, pp. 2208–2211, 2000. View at Google Scholar · View at Scopus
  42. D. J. Pettitt, P. H. Bennett, M. F. Saad, M. A. Charles, R. G. Nelson, and W. C. Knowler, “Abnormal glucose tolerance during pregnancy in Pima Indian women: long- term effects on offspring,” Diabetes, vol. 40, supplement 2, pp. 126–130, 1991. View at Google Scholar · View at Scopus
  43. T. Kue Young, P. J. Martens, S. P. Taback et al., “Type 2 diabetes mellitus in children: prenatal and early infancy risk factors among Native Canadians,” Archives of Pediatrics and Adolescent Medicine, vol. 156, no. 7, pp. 651–655, 2002. View at Google Scholar · View at Scopus
  44. N. D. Osgood, R. F. Dyck, and W. K. Grassmann, “The inter- and intragenerational impact of gestational diabetes on the epidemic of type 2 diabetes,” American Journal of Public Health, vol. 101, no. 1, pp. 173–179, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Stride, M. Shepherd, T. M. Frayling, M. P. Bulman, S. Ellard, and A. T. Hattersley, “Intrauterine hyperglycemia is associated with an earlier diagnosis of diabetes in HNF-1α gene mutation carriers,” Diabetes Care, vol. 25, no. 12, pp. 2287–2291, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. J. V. NeeL, “Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”?” American Journal of Human Genetics, vol. 14, pp. 353–362, 1962. View at Google Scholar · View at Scopus
  47. C. N. Hales and D. J. P. Barker, “Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis,” Diabetologia, vol. 35, no. 7, pp. 595–601, 1992. View at Publisher · View at Google Scholar · View at Scopus
  48. D. R. McCance, D. J. Pettitt, R. L. Hanson, L. T. H. Jacobsson, W. C. Knowler, and P. H. Bennett, “Birth weight and non-insulin dependent diabetes: thrifty genotype, thrifty phenotype, or surviving small baby genotype?” British Medical Journal, vol. 308, no. 6934, pp. 942–945, 1994. View at Google Scholar · View at Scopus
  49. P. D. Gluckman, M. A. Hanson, and A. S. Beedle, “Non-genomic transgenerational inheritance of disease risk,” BioEssays, vol. 29, no. 2, pp. 145–154, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Winick, “Cellular growth in intrauterine malnutrition,” Pediatric Clinics of North America, vol. 17, no. 1, pp. 69–78, 1970. View at Google Scholar · View at Scopus
  51. A. Snoeck, C. Remacle, B. Reusens, and J. J. Hoet, “Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas,” Biology of the Neonate, vol. 57, no. 2, pp. 107–118, 1990. View at Google Scholar · View at Scopus
  52. J. Petrik, B. Reusens, E. Arany et al., “A low protein diet alters the balance of islet cell replication and apoptosis in the fetal and neonatal rat and is associated with a reduced pancreatic expression of insulin-like growth factor-II,” Endocrinology, vol. 140, no. 10, pp. 4861–4873, 1999. View at Google Scholar · View at Scopus
  53. S. Boujendar, B. Reusens, S. Merezak et al., “Taurine supplementation to a low protein diet during foetal and early postnatal life restores a normal proliferation and apoptosis of rat pancreatic islets,” Diabetologia, vol. 45, no. 6, pp. 856–866, 2002. View at Google Scholar · View at Scopus
  54. K. A. Lillycrop, E. S. Phillips, A. A. Jackson, M. A. Hanson, and G. C. Burdge, “Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring,” Journal of Nutrition, vol. 135, no. 6, pp. 1382–1386, 2005. View at Google Scholar · View at Scopus
  55. K. Holemans, L. Aerts, and F. A. Van Assche, “Lifetime consequences of abnormal fetal pancreatic development,” Journal of Physiology, vol. 547, no. 1, pp. 11–20, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. F. A. Van Assche, W. Gepts, and L. Aerts, “The fetal endocrine pancreas in diabetes (human),” Diabetologia, vol. 12, no. 4, pp. 423–424, 1976. View at Google Scholar · View at Scopus
  57. R. A. Simmons, “Developmental origins of diabetes: the role of epigenetic mechanisms,” Current Opinion in Endocrinology, Diabetes and Obesity, vol. 14, no. 1, pp. 13–16, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. L. Aerts, R. Van Bree, V. Feytons, W. Rombauts, and F. A. Van Assche, “Plasma amino acids in diabetic pregnant rats and in their fetal and adult offspring,” Biology of the Neonate, vol. 56, no. 1, pp. 31–39, 1989. View at Google Scholar · View at Scopus