Table of Contents Author Guidelines Submit a Manuscript
Journal of Nutrition and Metabolism
Volume 2012, Article ID 136937, 10 pages
http://dx.doi.org/10.1155/2012/136937
Review Article

Does Branched-Chain Amino Acids Supplementation Modulate Skeletal Muscle Remodeling through Inflammation Modulation? Possible Mechanisms of Action

1Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sports, University of São Paulo, P.O. Box 05508-030 São Paulo, SP, Brazil
2Laboratory of Molecular and Cellular Physiology of Exercise, School of Physical Education and Sports, University of São Paulo, P.O. Box 05508-030, São Paulo, SP, Brazil
3Department of Nutrition, School of Public Health, University of São Paulo, P.O. Box 01246-904, São Paulo, SP, Brazil

Received 27 July 2011; Revised 1 December 2011; Accepted 12 January 2012

Academic Editor: Stanley Omaye

Copyright © 2012 Humberto Nicastro et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. A. Spiering, W. J. Kraemer, J. M. Anderson et al., “Resistance exercise biology: manipulation of resistance exercise programme variables determines the responses of cellular and molecular signalling pathways,” Sports Medicine, vol. 38, no. 7, pp. 527–540, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. E. I. Glover and S. M. Phillips, “Resistance exercise and appropriate nutrition to counteract muscle wasting and promote muscle hypertrophy,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 13, no. 6, pp. 630–634, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. J. P. Little and S. M. Phillips, “Resistance exercise and nutrition to counteract muscle wasting,” Applied Physiology, Nutrition and Metabolism, vol. 34, no. 5, pp. 817–829, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. N. A. Burd, J. E. Tang, D. R. Moore, and S. M. Phillips, “Exercise training and protein metabolism: influences of contraction, protein intake, and sex-based differences,” Journal of Applied Physiology, vol. 106, no. 5, pp. 1692–1701, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. A. C. Fry, “The role of resistance exercise intensity on muscle fibre adaptations,” Sports Medicine, vol. 34, no. 10, pp. 663–679, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Walker, R. S. Taipale, K. Nyman, W. J. Kraemer, and K. Häkkinen, “Neuromuscular and hormonal responses to constant and variable resistance loadings,” Medicine & Science in Sports & Exercise, vol. 3, no. 1, pp. 26–33, 2011. View at Google Scholar
  7. M. Izquierdo, M. González-Izal, I. Navarro-Amezqueta et al., “Effects of strength training on muscle fatigue mapping from surface EMG and blood metabolites,” Medicine and Science in Sports and Exercise, vol. 43, no. 2, pp. 303–311, 2011. View at Publisher · View at Google Scholar
  8. N. E. Zanchi, H. Nicastro, and A. H. Lancha Jr., “Potential antiproteolytic effects of L-leucine: observations of in vitro and in vivo studies,” Nutrition and Metabolism, vol. 5, no. 1, article 20, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Nicastro, G. G. Artioli, A. dos Santos Costa et al., “An overview of the therapeutic effects of leucine supplementation on skeletal muscle under atrophic conditions,” Amino Acids, vol. 40, no. 2, pp. 287–300, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. D. K. Layman, “The role of leucine in weight loss diets and glucose homeostasis,” Journal of Nutrition, vol. 133, no. 1, pp. 261S–267S, 2003. View at Google Scholar · View at Scopus
  11. H. C. Dreyer, M. J. Drummond, B. Pennings et al., “Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle,” American Journal of Physiology, vol. 294, no. 2, pp. E392–E400, 2008. View at Publisher · View at Google Scholar
  12. H. Nicastro, B. Gualano, W. M. A. M. de Moraes et al., “Effects of creatine supplementation on muscle wasting and glucose homeostasis in rats treated with high dose of dexamethasone,” Amino Acids. In press. View at Publisher · View at Google Scholar
  13. N. E. Zanchi and A. H. Lancha, “Mechanical stimuli of skeletal muscle: implications on mTOR/p70s6k and protein synthesis,” European Journal of Applied Physiology, vol. 102, no. 3, pp. 253–263, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Nobukuni, M. Joaquin, M. Roccio et al., “Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 40, pp. 14238–14243, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Yoshizawa, S. Hirayama, H. Sekizawa, T. Nagasawa, and K. Sugahara, “Oral administration of leucine stimulates phosphorylation of 4E-BP1 and S6K1 in skeletal muscle but not in liver of diabetic rats,” Journal of Nutritional Science and Vitaminology, vol. 48, no. 1, pp. 59–64, 2002. View at Google Scholar · View at Scopus
  16. S. J. Crozier, S. R. Kimball, S. W. Emmert, J. C. Anthony, and L. S. Jefferson, “Oral leucine administration stimulates protein synthesis in rat skeletal muscle,” Journal of Nutrition, vol. 135, no. 3, pp. 376–382, 2005. View at Google Scholar · View at Scopus
  17. S. Busquets, B. Alvarez, M. Llovera, N. Agell, F. J. López-Soriano, and J. M. Argilés, “Branched-chain amino acids inhibit proteolysis in rat skeletal muscle: mechanisms involved,” Journal of Cellular Physiology, vol. 184, no. 3, pp. 380–384, 2000. View at Publisher · View at Google Scholar
  18. M. Sandri, “Signaling in muscle atrophy and hypertrophy,” Physiology, vol. 23, no. 3, pp. 160–170, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. D. J. Glass, “Skeletal muscle hypertrophy and atrophy signaling pathways,” International Journal of Biochemistry and Cell Biology, vol. 37, no. 10, pp. 1974–1984, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. Q. Wang, R. Somwar, P. J. Bilan et al., “Protein kinase B/Akt participates in GLUT4 translocation by insulin in L6 myoblasts,” Molecular and Cellular Biology, vol. 19, no. 6, pp. 4008–4018, 1999. View at Google Scholar · View at Scopus
  21. J. Bohé, A. Low, R. R. Wolfe, and M. J. Rennie, “Human muscle protein synthesis is modulated by extracellular, not intramuscular amino acid availability: a dose-response study,” Journal of Physiology, vol. 552, no. 1, pp. 315–324, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. M. J. Rennie, “Anabolic resistance in critically ill patients,” Critical Care Medicine, vol. 37, no. 10, supplement, pp. S398–S399, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Huard, Y. Li, and F. H. Fu, “Muscle injuries and repair: current trends in research,” Journal of Bone and Joint Surgery A, vol. 84, no. 5, pp. 822–832, 2002. View at Google Scholar · View at Scopus
  24. L. J. Beaton, M. A. Tarnopolsky, and S. M. Phillips, “Contraction-induced muscle damage in humans following calcium channel blocker administration,” Journal of Physiology, vol. 544, no. 3, pp. 849–859, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Raastad, B. A. Risøy, H. B. Benestad, J. G. Fjeld, and J. Hallén, “Temporal relation between leukocyte accumulation in muscles and halted recovery 10–20 h after strength exercise,” Journal of Applied Physiology, vol. 95, no. 6, pp. 2503–2509, 2003. View at Google Scholar
  26. K. Hamada, E. Vannier, J. M. Sacheck, A. L. Witsell, and R. Roubenoff, “Senescence of human skeletal muscle impairs the local inflammatory cytokine response to acute eccentric exercise,” The FASEB Journal, vol. 19, no. 2, pp. 264–266, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. J. M. Peterson, K. D. Feeback, J. H. Baas, and F. X. Pizza, “Tumor necrosis factor-α promotes the accumulation of neutrophils and macrophages in skeletal muscle,” Journal of Applied Physiology, vol. 101, no. 5, pp. 1394–1399, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. B. K. Pedersen, A. Steensberg, and P. Schjerling, “Muscle-derived interleukin-6: possible biological effects,” Journal of Physiology, vol. 536, no. 2, pp. 329–337, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Tomiya, T. Aizawa, R. Nagatomi, H. Sensui, and S. Kokubun, “Myofibers Express IL-6 after Eccentric Exercise,” American Journal of Sports Medicine, vol. 32, no. 2, pp. 503–508, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. J. G. Tidball, “Inflammatory processes in muscle injury and repair,” American Journal of Physiology, vol. 288, no. 2, pp. R345–R353, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. P. Li and M. B. Reid, “NF-κB mediates the protein loss induced by TNF-α in differentiated skeletal muscle myotubes,” American Journal of Physiology - Regulatory Integrative and Comparative Physiology, vol. 279, no. 4, pp. R1165–R1170, 2000. View at Google Scholar · View at Scopus
  32. C. H. Lang and R. A. Frost, “Sepsis-induced suppression of skeletal muscle translation initiation mediated by tumor necrosis factor α,” Metabolism, vol. 56, no. 1, pp. 49–57, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. D. L. Williamson, S. R. Kimball, and L. S. Jefferson, “Acute treatment with TNF-α attenuates insulin-stimulated protein synthesis in cultures of C2C12 myotubes through a MEK1-sensitive mechanism,” American Journal of Physiology, vol. 289, no. 1 52-1, pp. E95–E104, 2005. View at Publisher · View at Google Scholar
  34. R. C. J. Langen, J. L. J. Van Der Velden, A. M. W. J. Schols, M. C. J. M. Kelders, E. F. M. Wouters, and Y. M. W. Janssen-Heininger, “Tumor necrosis factor-alpha inhibits myogenic differentiation through MyoD protein destabilization,” The FASEB Journal, vol. 18, no. 2, pp. 227–237, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Coletti, V. Moresi, S. Adamo, M. Molinaro, and D. Sassoon, “Tumor necrosis factor-α gene transfer induces cachexia and inhibits muscle regeneration,” Genesis, vol. 43, no. 3, pp. 120–128, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Tan, X. Peng, F. Wang, Z. You, Y. Dong, and S. Wang, “Effects of tumor necrosis factor-alpha on the 26S proteasome and 19S regulator in skeletal muscle of severely scalded mice,” Journal of Burn Care and Research, vol. 27, no. 2, pp. 226–233, 2006. View at Google Scholar · View at Scopus
  37. A. Saini, N. Al-Shanti, S. H. Faulkner, and C. E. Stewart, “Pro- and anti-apoptotic roles for IGF-I in TNF-α-induced apoptosis: a MAP kinase mediated mechanism,” Growth Factors, vol. 26, no. 5, pp. 239–253, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. P. Li, Y. Chen, A. S. Li, and M. B. Reid, “Hydrogen peroxide stimulates ubiquitin-conjugating activity and expression of genes for specific E2 and E3 proteins in skeletal muscle myotubes,” American Journal of Physiology, vol. 285, no. 4, pp. C806–C812, 2003. View at Google Scholar · View at Scopus
  39. N. Stupka, M. A. Tarnopolsky, N. J. Yardley, and S. M. Phillips, “Cellular adaptation to repeated eccentric exercise-induced muscle damage,” Journal of Applied Physiology, vol. 91, no. 4, pp. 1669–1678, 2001. View at Google Scholar · View at Scopus
  40. E. J. Foulstone, C. Huser, A. L. Crown, J. M. P. Holly, and C. E. H. Stewart, “Differential signalling mechanisms predisposing primary human skeletal muscle cells to altered proliferation and differentiation: roles of IGF-I and TNFα,” Experimental Cell Research, vol. 294, no. 1, pp. 223–235, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. R. C. Langen, A. M. Schols, M. C. Kelders, J. L. Van der Velden, E. F. Wouters, and Y. M. Janssen-Heininger, “Muscle wasting and impaired muscle regeneration in a murine model of chronic pulmonary inflammation,” American Journal of Respiratory Cell and Molecular Biology, vol. 35, no. 6, pp. 689–696, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. S. E. Chen, B. Jin, and Y. P. Li, “TNF-α regulates myogenesis and muscle regeneration by activating p38 MAPK,” American Journal of Physiology, vol. 292, no. 5, pp. C1660–C1671, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. I. Plaisance, C. Morandi, C. Murigande, and M. Brink, “TNF-α increases protein content in C2C12 and primary myotubes by enhancing protein translation via the TNF-R1, PI3K, and MEK,” American Journal of Physiology, vol. 294, no. 2, pp. E241–E250, 2008. View at Publisher · View at Google Scholar
  44. M. Dehoux, C. Gobier, P. Lause, L. Bertrand, J. M. Ketelslegers, and J. P. Thissen, “IGF-I does not prevent myotube atrophy caused by proinflammatory cytokines despite activation of Akt/Foxo and GSK-3beta pathways and inhibition of atrogin-1 mRNA,” American Journal of Physiology, vol. 292, no. 1, pp. 145–150, 2007. View at Google Scholar
  45. D. L. Waters, R. N. Baumgartner, and P. J. Garry, “Sarcopenia: current perspectives,” Journal of Nutrition, Health and Aging, vol. 4, no. 3, pp. 133–139, 2000. View at Google Scholar · View at Scopus
  46. E. J. Metter, L. A. Talbot, M. Schrager, and R. Conwit, “Skeletal muscle strength as a predictor of all-cause mortality in healthy men,” Journals of Gerontology A, vol. 57, no. 10, pp. B359–B365, 2002. View at Google Scholar · View at Scopus
  47. T. Rantanen, T. Harris, S. G. Leveille et al., “Muscle strength and body mass index as long-term predictors of mortality in initially healthy men,” Journals of Gerontology A, vol. 55, no. 3, pp. M168–M173, 2000. View at Google Scholar · View at Scopus
  48. P. G. Giresi, E. J. Stevenson, J. Theilhaber et al., “Identification of a molecular signature of sarcopenia,” Physiological Genomics, vol. 21, pp. 253–263, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. L. A. Schaap, S. M. Pluijm, D. J. Deeg, and M. Visser, “Inflammatory markers and loss of muscle mass (Sarcopenia) and strength,” American Journal of Medicine, vol. 119, no. 6, pp. 526.e9–526.e17, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. M. A. Schrager, E. J. Metter, E. Simonsick et al., “Sarcopenic obesity and inflammation in the InCHIANTI study,” Journal of Applied Physiology, vol. 102, no. 3, pp. 919–925, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. N. Carbó, V. Ribas, S. Busquets, B. Alvarez, F. J. López-Soriano, and J. M. Argilés, “Short-term effects of leptin on skeletal muscle protein metabolism in the rat,” Journal of Nutritional Biochemistry, vol. 11, no. 9, pp. 431–435, 2000. View at Publisher · View at Google Scholar · View at Scopus
  52. J. S. Greiwe, J. O. Holloszy, and C. F. Semenkovich, “Exercise induces lipoprotein lipase and GLUT-4 protein in muscle independent of adrenergic-receptor signaling,” Journal of Applied Physiology, vol. 89, no. 1, pp. 176–181, 2000. View at Google Scholar · View at Scopus
  53. G. Nystrom, A. Pruznak, D. Huber, R. A. Frost, and C. H. Lang, “Local insulin-like growth factor I prevents sepsis-induced muscle atrophy,” Metabolism, vol. 58, no. 6, pp. 787–797, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. E. Svanberg, R. A. Frost, C. H. Lang et al., “IGF-I/IGFBP-3 binary complex modulates sepsis-induced inhibition of protein synthesis in skeletal muscle,” American Journal of Physiology, vol. 279, no. 5 42-5, pp. E1145–E1158, 2000. View at Google Scholar
  55. R. A. Frost, G. J. Nystrom, and C. H. Lang, “Endotoxin and interferon-γ inhibit translation in skeletal muscle cells by stimulating nitric oxide synthase activity,” Shock, vol. 32, no. 4, pp. 416–426, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. F. Haddad, F. Zaldivar, D. M. Cooper, and G. R. Adams, “IL-6-induced skeletal muscle atrophy,” Journal of Applied Physiology, vol. 98, no. 3, pp. 911–917, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. B. Baeza-Raja and P. Muñoz-Cánoves, “p38 MAPK-induced nuclear factor-κB activity is required for skeletal muscle differentiation: role of interleukin-6,” Molecular Biology of the Cell, vol. 15, no. 4, pp. 2013–2026, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. N. Al-Shanti, A. Saini, S. H. Faulkner, and C. E. Stewart, “Beneficial synergistic interactions of TNF-α and IL-6 in C2 skeletal myoblasts—potential cross-talk with IGF system,” Growth Factors, vol. 26, no. 2, pp. 61–73, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. M. S. Hayden and S. Ghosh, “Signaling to NF-κB,” Genes and Development, vol. 18, no. 18, pp. 2195–2224, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. G. Bonizzi and M. Karin, “The two NF-κB activation pathways and their role in innate and adaptive immunity,” Trends in Immunology, vol. 25, no. 6, pp. 280–288, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. M. J. Jackson, “Redox regulation of skeletal muscle,” IUBMB Life, vol. 60, no. 8, pp. 497–501, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. D. Cai, J. D. Frantz, N. E. Tawa Jr. et al., “IKKβ/NF-κB activation causes severe muscle wasting in mice,” Cell, vol. 119, no. 2, pp. 285–298, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. K. J. Ladner, M. A. Caligiuri, and D. C. Guttridge, “Tumor necrosis factor-regulated biphasic activation of NF-κb is required for cytokine-induced loss of skeletal muscle gene products,” Journal of Biological Chemistry, vol. 278, no. 4, pp. 2294–2303, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. H. Kamata, T. Manabe, S. I. Oka, K. Kamata, and H. Hirata, “Hydrogen peroxide activates IκB kinases through phosphorylation of serine residues in the activation loops,” FEBS Letters, vol. 519, no. 1–3, pp. 231–237, 2002. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Dodd, B. Hain, and A. Judge, “Hsp70 prevents disuse muscle atrophy in senescent rats,” Biogerontology, vol. 10, no. 5, pp. 605–611, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. S. M. Senf, S. L. Dodd, J. M. McClung, and A. R. Judge, “Hsp70 overexpression inhibits NF-κB and Foxo3a transcriptional activities and prevents skeletal muscle atrophy,” The FASEB Journal, vol. 22, no. 11, pp. 3836–3845, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Alonso, P. S. Collado, and J. González-Gallego, “Melatonin inhibits the expression of the inducible isoform of nitric oxide synthase and nuclear factor kappa B activation in rat skeletal muscle,” Journal of Pineal Research, vol. 41, no. 1, pp. 8–14, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. C. K. Roberts, D. Won, S. Pruthi, S. S. Lin, and R. J. Barnard, “Effect of a diet and exercise intervention on oxidative stress, inflammation and monocyte adhesion in diabetic men,” Diabetes Research and Clinical Practice, vol. 73, no. 3, pp. 249–259, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Gielen, V. Adams, S. Möbius-Winkler et al., “Anti-inflammatory effects of exercise training in the skeletal muscle of patients with chronic heart failure,” Journal of the American College of Cardiology, vol. 42, no. 5, pp. 861–868, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. S. V. Brooks, A. Vasilaki, L. M. Larkin, A. McArdle, and M. J. Jackson, “Repeated bouts of aerobic exercise lead to reductions in skeletal muscle free radical generation and nuclear factor κB activation,” Journal of Physiology, vol. 586, no. 16, pp. 3979–3990, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. R. Jimenez-Jimenez, M. J. Cuevas, M. Almar et al., “Eccentric training impairs NF-?B activation and over-expression of inflammation-related genes induced by acute eccentric exercise in the elderly,” Mechanisms of Ageing and Development, vol. 129, no. 6, pp. 313–321, 2008. View at Google Scholar
  72. M. C. Gomez-Cabrera, E. Domenech, and J. Viña, “Moderate exercise is an antioxidant: upregulation of antioxidant genes by training,” Free Radical Biology and Medicine, vol. 44, no. 2, pp. 126–131, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. L. L. Ji, “Modulation of skeletal muscle antioxidant defense by exercise: role of redox signaling,” Free Radical Biology and Medicine, vol. 44, no. 2, pp. 142–152, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. E. Lima-Cabello, M. J. Cuevas, N. Garatachea, M. Baldini, M. Almar, and J. Gonzalez-Gallego, “Eccentric exercise induces nitric oxide synthase expression through nuclear factor-KB modulation in rat skeletal muscle,” Journal of Applied Physiology, vol. 108, no. 3, pp. 575–583, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. A. E. Harper, R. H. Miller, and K. P. Block, “Branched-chain amino acid metabolism,” Annual Review of Nutrition, vol. 4, pp. 409–454, 1984. View at Google Scholar · View at Scopus
  76. J. M. Creeth, B. Cooper, A. S. R. Donald, and J. R. Clamp, “Studies of the limited degradation of mucus glycoproteins. The effect of dilute hydrogen peroxide,” Biochemical Journal, vol. 211, no. 2, pp. 323–332, 1983. View at Google Scholar · View at Scopus
  77. J. E. Wergedal and A. E. Harper, “Metabolic adaptations in higher animals. 10. Glutamic dehydrogenase activity of rats consuming high protein diets,” Proceedings of the Society for Experimental Biology and Medicine, vol. 116, pp. 600–604, 1964. View at Google Scholar
  78. P. Felig, T. Pozefsk, E. Marlis, and G. F. Cahill Jr., “Alanine: key role in gluconeogenesis,” Science, vol. 167, no. 3920, pp. 1003–1004, 1970. View at Google Scholar
  79. L. E. Mallet, J. H. Exton, and C. R. Park, “Control of gluconeogenesis from amino acids in the perfused rat liver,” Journal of Biological Chemistry, vol. 244, no. 20, pp. 5713–5723, 1969. View at Google Scholar · View at Scopus
  80. S. Bannai, H. N. Christensen, J. V. Vadgama et al., “Amino acid transport systems,” Nature, vol. 311, no. 5984, p. 308, 1984. View at Google Scholar · View at Scopus
  81. H. S. Hundal and P. M. Taylor, “Amino acid transceptors: gate keepers of nutrient exchange and regulators of nutrient signaling,” American Journal of Physiology, vol. 296, no. 4, pp. E603–E613, 2009. View at Publisher · View at Google Scholar
  82. G. Ehrensvard, A. Fischer, and R. Stjernholm, “Protein metabolism of tissue cells in vitro; the chemical nature of some obligate factors of tissue cell nutrition,” Acta Physiologica Scandinavica, vol. 18, no. 2-3, pp. 218–230, 1949. View at Google Scholar
  83. M. S. M. Ardawi and E. A. Newsholme, “Glutamine metabolism in lymphocytes of the rat,” Biochemical Journal, vol. 212, no. 3, pp. 835–842, 1983. View at Google Scholar · View at Scopus
  84. P. Newsholme, R. Curi, S. Gordon, and E. A. Newsholme, “Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages,” Biochemical Journal, vol. 239, no. 1, pp. 121–125, 1986. View at Google Scholar · View at Scopus
  85. T. C. Pithon-Curi, M. P. De Melo, and R. Curi, “Glucose and glutamine utilization by rat lymphocytes, monocytes and neutrophils in culture: a comparative study,” Cell Biochemistry and Function, vol. 22, no. 5, pp. 321–326, 2004. View at Publisher · View at Google Scholar · View at Scopus
  86. P. Yaqoob and P. C. Calder, “Glutamine requirement of proliferating T lymphocytes,” Nutrition, vol. 13, no. 7-8, pp. 646–651, 1997. View at Publisher · View at Google Scholar · View at Scopus
  87. T. Rohde, D. A. Maclean, and B. K. Pedersen, “Glutamine, lymphocyte proliferation and cytokine production,” Scandinavian Journal of Immunology, vol. 44, no. 6, pp. 648–650, 1996. View at Google Scholar · View at Scopus
  88. P. Yaqoob and P. C. Calder, “Cytokine production by human peripheral blood mononuclear cells: differential sensitivity to glutamine availability,” Cytokine, vol. 10, no. 10, pp. 790–794, 1998. View at Publisher · View at Google Scholar · View at Scopus
  89. A. Hubert-Buron, J. Leblond, A. Jacquot, P. Ducrotte, P. Dechelotte, and M. Coeffier, “Glutamine pretreatment reduces IL-8 production in human intestinal epithelial cells by limiting IkappaBalpha ubiquitination,” Journal of Nutrition, vol. 136, no. 6, pp. 1461–1465, 2006. View at Google Scholar
  90. Y. Erbil, S. Öztezcan, M. Giriş et al., “The effect of glutamine on radiation-induced organ damage,” Life Sciences, vol. 78, no. 4, pp. 376–382, 2005. View at Publisher · View at Google Scholar · View at Scopus
  91. C. Deǧer, Y. Erbil, M. Giriş et al., “The effect of glutamine on pancreatic damage in TNBS-induced colitis,” Digestive diseases and sciences, vol. 51, no. 10, pp. 1841–1846, 2006. View at Publisher · View at Google Scholar · View at Scopus
  92. H. Fillmann, N. A. Kretzmann, B. San-Miguel et al., “Glutamine inhibits over-expression of pro-inflammatory genes and down-regulates the nuclear factor kappaB pathway in an experimental model of colitis in the rat,” Toxicology, vol. 236, no. 3, pp. 217–226, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. N. D. Perkins, “Integrating cell-signalling pathways with NF-κB and IKK function,” Nature Reviews Molecular Cell Biology, vol. 8, no. 1, pp. 49–62, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. O. Sharif, V. N. Bolshakov, S. Raines, P. Newham, and N. D. Perkins, “Transcriptional profiling of the LPS induced NF-κB response in macrophages,” BMC Immunology, vol. 8, article no. 1, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. T. D. Gilmore, “Introduction to NF-κB: players, pathways, perspectives,” Oncogene, vol. 25, no. 51, pp. 6680–6684, 2006. View at Publisher · View at Google Scholar · View at Scopus
  96. W. Li, J. S. Moylan, M. A. Chambers, J. Smith, and M. B. Reid, “Interleukin-1 stimulates catabolism in C2C12 myotubes,” American Journal of Physiology, vol. 297, no. 3, pp. C706–C714, 2009. View at Publisher · View at Google Scholar · View at Scopus
  97. D. Fouad, E. Siendones, G. Costán, and J. Muntané, “Role of NF-κB activation and nitric oxide expression during PGE1 protection against D-galactosamine-induced cell death in cultured rat hepatocytes,” Liver International, vol. 24, no. 3, pp. 227–236, 2004. View at Google Scholar · View at Scopus
  98. T. Yasukawa, E. Tokunaga, H. Ota, H. Sugita, J. A. J. Martyn, and M. Kaneki, “S-nitrosylation-dependent inactivation of Akt/protein kinase B in insulin resistance,” Journal of Biological Chemistry, vol. 280, no. 9, pp. 7511–7518, 2005. View at Publisher · View at Google Scholar · View at Scopus
  99. F. G. Hamel, J. L. Upward, G. L. Siford, and W. C. Duckworth, “Inhibition of proteasome activity by selected amino acids,” Metabolism, vol. 52, no. 7, pp. 810–814, 2003. View at Publisher · View at Google Scholar · View at Scopus
  100. E. Blomstrand, J. Eliasson, H. K.R. Karlssonr, and R. Köhnke, “Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise,” Journal of Nutrition, vol. 136, no. 1, pp. 269S–273S, 2006. View at Google Scholar
  101. H. K. Karlsson, P. A. Nilsson, J. Nilsson, A. V. Chibalin, J. R. Zierath, and E. Blomstrand, “Branched-chain amino acids increase p70S6k phosphorylation in human skeletal muscle after resistance exercise,” American Journal of Physiology, vol. 287, no. 1, pp. E1–E7, 2004. View at Publisher · View at Google Scholar
  102. P. Gulati, L. D. Gaspers, S. G. Dann et al., “Amino Acids Activate mTOR Complex 1 via Ca2+/CaM Signaling to hVps34,” Cell Metabolism, vol. 7, no. 5, pp. 456–465, 2008. View at Publisher · View at Google Scholar · View at Scopus
  103. B. J. Hardin, K. S. Campbell, J. D. Smith et al., “TNF-α acts via TNFR1 and muscle-derived oxidants to depress myofibrillar force in murine skeletal muscle,” Journal of Applied Physiology, vol. 104, no. 3, pp. 694–699, 2008. View at Publisher · View at Google Scholar · View at Scopus
  104. Y. Lecarpentier, “Physiological role of free radicals in skeletal muscles,” Journal of Applied Physiology, vol. 103, no. 6, pp. 1917–1918, 2007. View at Publisher · View at Google Scholar · View at Scopus
  105. A. Musarò, S. Fulle, and G. Fanò, “Oxidative stress and muscle homeostasis,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 13, no. 3, pp. 236–242, 2010. View at Publisher · View at Google Scholar
  106. A. Bonetto, F. Penna, M. Muscaritoli et al., “Are antioxidants useful for treating skeletal muscle atrophy?” Free Radical Biology and Medicine, vol. 47, no. 7, pp. 906–916, 2009. View at Publisher · View at Google Scholar · View at Scopus
  107. J. S. Moylan and M. B. Reid, “Oxidative stress, chronic disease, and muscle wasting,” Muscle and Nerve, vol. 35, no. 4, pp. 411–429, 2007. View at Publisher · View at Google Scholar · View at Scopus
  108. F. H. Andrade, M. B. Reid, D. G. Allen, and H. Westerblad, “Effect of hydrogen peroxide and dithiothreitol on contractile function of single skeletal muscle fibres from the mouse,” Journal of Physiology, vol. 509, no. 2, pp. 565–575, 1998. View at Publisher · View at Google Scholar · View at Scopus
  109. F. Shang and A. Taylor, “Ubiquitin-proteasome pathway and cellular responses to oxidative stress,” Free Radical Biology and Medicine, vol. 51, no. 1, pp. 5–16, 2011. View at Publisher · View at Google Scholar
  110. Y. P. Li, R. J. Schwartz, I. D. Waddell, B. R. Holloway, and M. B. Reid, “Skeletal muscle myocytes undergo protein loss and reactive oxygen- mediated NF-κB activation in response to tumor necrosis factor α,” The FASEB Journal, vol. 12, no. 10, pp. 871–880, 1998. View at Google Scholar · View at Scopus
  111. Y. P. Li, C. M. Atkins, J. D. Sweatt, and M. B. Reid, “Mitochondria mediate tumor necrosis factor-α/NF-κB signaling in skeletal muscle myotubes,” Antioxidants and Redox Signaling, vol. 1, no. 1, pp. 97–104, 1999. View at Google Scholar · View at Scopus
  112. J. Cheng, K. Turksen, Q. C. Yu, H. Schreiber, M. Teng, and E. Fuchs, “Cachexia and graft-vs.-host-disease-type skin changes in keratin promoter- driven TNFα transgenic mice,” Genes and Development, vol. 6, no. 8, pp. 1444–1456, 1992. View at Google Scholar · View at Scopus
  113. Y. Wei, K. Chen, A. T. Whaley-Connell, C. S. Stump, J. A. Ibdah, and J. R. Sowers, “Skeletal muscle insulin resistance: role of inflammatory cytokines and reactive oxygen species,” American Journal of Physiology, vol. 294, no. 3, pp. R673–R680, 2008. View at Google Scholar
  114. C. Nathan, “Specificity of a third kind: reactive oxygen and nitrogen intermediates in cell signaling,” Journal of Clinical Investigation, vol. 111, no. 6, pp. 769–778, 2003. View at Publisher · View at Google Scholar · View at Scopus
  115. B. Marzani, M. Balage, A. Vénien et al., “Antioxidant supplementation restores defective leucine stimulation of protein synthesis in skeletal muscle from old rats,” Journal of Nutrition, vol. 138, no. 11, pp. 2205–2211, 2008. View at Publisher · View at Google Scholar · View at Scopus
  116. L. Mosoni, M. Balage, E. Vazeille et al., “Antioxidant supplementation had positive effects in old rat muscle, but through better oxidative status in other organs,” Nutrition, vol. 26, no. 11-12, pp. 1157–1162, 2010. View at Publisher · View at Google Scholar · View at Scopus
  117. G. D'Antona, M. Ragni, A. Cardile et al., “Branched-chain amino acid supplementation promotes survival and supports cardiac and skeletal muscle mitochondrial biogenesis in middle-aged mice,” Cell Metabolism, vol. 12, no. 4, pp. 362–372, 2010. View at Publisher · View at Google Scholar · View at Scopus
  118. G. I. Smith, P. Atherton, D. N. Reeds et al., “Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: a randomized controlled trial,” American Journal of Clinical Nutrition, vol. 93, no. 2, pp. 402–412, 2011. View at Publisher · View at Google Scholar