Table of Contents Author Guidelines Submit a Manuscript
Journal of Nutrition and Metabolism
Volume 2012, Article ID 238056, 8 pages
http://dx.doi.org/10.1155/2012/238056
Clinical Study

Inflammatory and Oxidative Stress Responses to High-Carbohydrate and High-Fat Meals in Healthy Humans

1Department of Endocrinology and Metabolism, Aarhus University Hospital, Tage-Hansensgade 2, 8000 Aarhus C, Denmark
2Diabetes and Obesity Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia
3Discipline of Medicine, The University of Adelaide, Eleanor Harrald Building, Frome Road, Adelaide, SA 5005, Australia

Received 11 August 2011; Revised 4 October 2011; Accepted 16 October 2011

Academic Editor: C. S. Johnston

Copyright © 2012 S. Gregersen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. L. Evans, I. D. Goldfine, B. A. Maddux, and G. M. Grodsky, “Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes,” Endocrine Reviews, vol. 23, no. 5, pp. 599–622, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. K. E. Wellen and G. S. Hotamisligil, “Inflammation, stress, and diabetes,” Journal of Clinical Investigation, vol. 115, no. 5, pp. 1111–1119, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Stocker and J. F. Keaney Jr., “Role of oxidative modifications in atherosclerosis,” Physiological Reviews, vol. 84, no. 4, pp. 1381–1478, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Bloch-Damti and N. Bashan, “Proposed mechanisms for the induction of insulin resistance by oxidative stress,” Antioxidants and Redox Signaling, vol. 7, no. 11-12, pp. 1553–1567, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Festa, A. J. G. Hanley, R. P. Tracy, R. D'Agostino Jr., and S. M. Haffner, “Inflammation in the prediabetic state is related to increased insulin resistance rather than decreased insulin secretion,” Circulation, vol. 108, no. 15, pp. 1822–1830, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. G. S. Hotamisligil, N. S. Shargill, and B. M. Spiegelman, “Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance,” Science, vol. 259, no. 5091, pp. 87–91, 1993. View at Google Scholar · View at Scopus
  7. J. F. Keaney Jr., M. G. Larson, R. S. Vasan et al., “Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham study,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 3, pp. 434–439, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. K. L. Hoehn, A. B. Salmon, C. Hohnen-Behrens et al., “Insulin resistance is a cellular antioxidant defense mechanism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 42, pp. 17787–17792, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Houstis, E. D. Rosen, and E. S. Lander, “Reactive oxygen species have a causal role in multiple forms of insulin resistance,” Nature, vol. 440, no. 7086, pp. 944–948, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. G. S. Hotamisligil, “Inflammation and metabolic disorders,” Nature, vol. 444, no. 7121, pp. 860–867, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. M. F. Carroll and D. S. Schade, “Timing of antioxidant vitamin ingestion alters postprandial proatherogenic serum markers,” Circulation, vol. 108, no. 1, pp. 24–31, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. P. J. Manning, W. H. F. Sutherland, M. M. McGrath, S. A. De Jong, R. J. Walker, and M. J. A. Williams, “Postprandial cytokine concentrations and meal composition in obese and lean women,” Obesity, vol. 16, no. 9, pp. 2046–2052, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. P. W. Peake, A. D. Kriketos, L. V. Campbell, and J. A. Charlesworth, “Response of the alternative complement pathway to an oral fat load in first-degree relatives of subjects with type II diabetes,” International Journal of Obesity, vol. 29, no. 4, pp. 429–435, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. S. D. Poppitt, G. F. Keogh, F. E. Lithander et al., “Postprandial response of adiponectin, interleukin-6, tumor necrosis factor-α, and C-reactive protein to a high-fat dietary load,” Nutrition, vol. 24, no. 4, pp. 322–329, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Lim, H. Won, Y. Kim et al., “Antioxidant enzymes induced by repeated intake of excess energy in the form of high-fat, high-carbohydrate meals are not sufficient to block oxidative stress in healthy lean individuals,” British Journal of Nutrition, vol. 106, no. 10, pp. 1544–1551, 2011. View at Google Scholar
  16. A. Ceriello, N. Bortolotti, E. Motz et al., “Meal-induced oxidative stress and low-density lipoprotein oxidation in diabetes: the possible role of hyperglycemia,” Metabolism, vol. 48, no. 12, pp. 1503–1508, 1999. View at Google Scholar · View at Scopus
  17. A. Viardot, L. K. Heilbronn, H. Herzog, S. Gregersen, and L. V. Campbell, “Abnormal postprandial PYY response in insulin sensitive nondiabetic subjects with a strong family history of type 2 diabetes,” International Journal of Obesity, vol. 32, no. 6, pp. 943–948, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. L. K. Heilbronn, S. Gregersen, D. Shirkhedkar, D. Hu, and L. V. Campbell, “Impaired fat oxidation after a single high-fat meal in insulin-sensitive nondiabetic individuals with a family history of type 2 diabetes,” Diabetes, vol. 56, no. 8, pp. 2046–2053, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Erridge, T. Attina, C. M. Spickett, and D. J. Webb, “A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation,” American Journal of Clinical Nutrition, vol. 86, no. 5, pp. 1286–1292, 2007. View at Google Scholar · View at Scopus
  20. C. W. Smith, “Diet and leukocytes,” American Journal of Clinical Nutrition, vol. 86, no. 5, pp. 1257–1258, 2007. View at Google Scholar
  21. C. Patel, H. Ghanim, S. Ravishankar et al., “Prolonged reactive oxygen species generation and nuclear factor-κB activation after a high-fat, high-carbohydrate meal in the obese,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 11, pp. 4476–4479, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. L. K. Heilbronn and L. V. Campbell, “Adipose tissue macrophages, low grade inflammation and insulin resistance in human obesity,” Current Pharmaceutical Design, vol. 14, no. 12, pp. 1225–1230, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. M. A. Febbraio, N. Hiscock, M. Saccheti, C. P. Fischer, and B. K. Pedersen, “Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction,” Diabetes, vol. 53, no. 7, pp. 1643–1648, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. A. M. Petersen and B. K. Pedersen, “The role of IL-6 in mediating the anti-inflammatory effects of exercise,” Journal of Physiology and Pharmacology, vol. 57, supplement 10, pp. 43–51, 2006. View at Google Scholar
  25. A. Krook, “IL-6 and metabolism-new evidence and new questions,” Diabetologia, vol. 51, no. 7, pp. 1097–1099, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. A. L. Carey, G. R. Steinberg, S. L. Macaulay et al., “Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase,” Diabetes, vol. 55, no. 10, pp. 2688–2697, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. A. G. Holmes, J. L. Mesa, B. A. Neill et al., “Prolonged interleukin-6 administration enhances glucose tolerance and increases skeletal muscle PPARα and UCP2 expression in rats,” Journal of Endocrinology, vol. 198, no. 2, pp. 367–374, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. V. B. Matthews, T. L. Allen, S. Risis et al., “Interleukin-6-deficient mice develop hepatic inflammation and systemic insulin resistance,” Diabetologia, vol. 53, no. 11, pp. 2431–2441, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. N. C. Dixon, T. L. Hurst, D. C. S. Talbot, R. M. Tyrrell, and D. Thompson, “Active middle-aged men have lower fasting inflammatory markers but the postprandial inflammatory response is minimal and unaffected by physical activity status,” Journal of Applied Physiology, vol. 107, no. 1, pp. 63–68, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. S. R. Thompson, P. A. McCaskie, J. P. Beilby et al., “IL18 haplotypes are associated with serum IL-18 concentrations in a population-based study and a cohort of individuals with premature coronary heart disease,” Clinical Chemistry, vol. 53, no. 12, pp. 2078–2085, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. G. R. C. Zilverschoon, C. J. Tack, L. A. B. Joosten, B. J. Kullberg, J. W. M. van der Meer, and M. G. Netea, “Interleukin-18 resistance in patients with obesity and type 2 diabetes mellitus,” International Journal of Obesity, vol. 32, no. 9, pp. 1407–1414, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. C. P. Fischer, L. B. Perstrup, A. Berntsen, P. Eskildsen, and B. K. Pedersen, “Elevated plasma interleukin-18 is a marker of insulin-resistance in type 2 diabetic and non-diabetic humans,” Clinical Immunology, vol. 117, no. 2, pp. 152–160, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Hung, B. M. McQuillan, C. M. L. Chapman, P. L. Thompson, and J. P. Beilby, “Elevated interleukin-18 levels are associated with the metabolic syndrome independent of obesity and insulin resistance,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 6, pp. 1268–1273, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. M. G. Netea, L. A. B. Joosten, E. Lewis et al., “Deficiency of interleukin-18 in mice leads to hyperphagia, obesity and insulin resistance,” Nature Medicine, vol. 12, no. 6, pp. 650–656, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. J. M. Bruun, B. Stallknecht, J. W. Helge, and B. Richelsen, “Interleukin-18 in plasma and adipose tissue: effects of obesity, insulin resistance, and weight loss,” European Journal of Endocrinology, vol. 157, no. 4, pp. 465–471, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Esposito, F. Nappo, F. Giugliano et al., “Meal modulation of circulating interleukin 18 and adiponectin concentrations in healthy subjects and in patients with type 2 diabetes mellitus,” American Journal of Clinical Nutrition, vol. 78, no. 6, pp. 1135–1140, 2003. View at Google Scholar · View at Scopus
  37. R. S. Rosenson, D. A. Wolff, A. L. Huskin, I. B. Helenowski, and A. W. Rademaker, “Fenofibrate therapy ameliorates fasting and postprandial lipoproteinemia, oxidative stress, and the inflammatory response in subjects with hypertriglyceridemia and the metabolic syndrome,” Diabetes Care, vol. 30, no. 8, pp. 1945–1951, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Saxena, S. V. Madhu, R. Shukla, K. M. Prabhu, and J. K. Gambhir, “Postprandial hypertriglyceridemia and oxidative stress in patients of type 2 diabetes mellitus with macrovascular complications,” Clinica Chimica Acta, vol. 359, no. 1-2, pp. 101–108, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. E. J. Anderson, M. E. Lustig, K. E. Boyle et al., “Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans,” Journal of Clinical Investigation, vol. 119, no. 3, pp. 573–581, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. M. A. Abdul-Ghani, R. Jani, A. Chavez, M. Molina-Carrion, D. Tripathy, and R. A. DeFronzo, “Mitochondrial reactive oxygen species generation in obese non-diabetic and type 2 diabetic participants,” Diabetologia, vol. 52, no. 4, pp. 574–582, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. W. Bao, F. Song, X. Li et al., “Plasma heme oxygenase-1 concentration is elevated in individuals with type 2 diabetes mellitus,” PLoS One, vol. 5, no. 8, Article ID e12371, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Avogaro, E. Pagnin, and L. Calò, “Monocyte NADPH oxidase subunit p22phox and inducible hemeoxygenase-1 gene expressions are increased in type II diabetic patients: relationship with oxidative stress,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 4, pp. 1753–1759, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. C. R. Bruce, A. L. Carey, J. A. Hawley, and M. A. Febbraio, “Intramuscular heat shock protein 72 and heme oxygenase-1 mRNA are reduced in patients with type 2 diabetes: evidence that insulin resistance is associated with a disturbed antioxidant defense mechanism,” Diabetes, vol. 52, no. 9, pp. 2338–2345, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. J. F. Ndisang and A. Jadhav, “Up-regulating the hemeoxygenase system enhances insulin sensitivity and improves glucose metabolism in insulin-resistant diabetes in Goto-Kakizaki rats,” Endocrinology, vol. 150, no. 6, pp. 2627–2636, 2009. View at Publisher · View at Google Scholar · View at Scopus