Table of Contents Author Guidelines Submit a Manuscript
Journal of Nutrition and Metabolism
Volume 2012, Article ID 268680, 12 pages
http://dx.doi.org/10.1155/2012/268680
Research Article

Exercise and Omega-3 Polyunsaturated Fatty Acid Supplementation for the Treatment of Hepatic Steatosis in Hyperphagic OLETF Rats

1Departments of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65201, USA
2Division of Animal Sciences, University of Missouri, Columbia, MO 65201, USA
3Internal Medicine-Division of Gastroenterology, University of Missouri, Columbia, MO 65201, USA
4Harry S Truman Memorial Veterans Hospital, Research Service, Columbia, MO 65201, USA
5Food Science-Division of Food Systems & Bioengineering, University of Missouri, Columbia, MO 65201, USA
6Department of Biomedical Sciences, University of Missouri, Columbia, MO 65201, USA
7Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65201, USA
8Dalton Cardiovascular Center, University of Missouri, Columbia, MO 65201, USA

Received 9 June 2011; Accepted 11 July 2011

Academic Editor: Jean-Marc Lavoie

Copyright © 2012 Sarah J. Borengasser et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Clark, F. L. Brancati, and A. M. Diehl, “Nonalcoholic fatty liver disease,” Gastroenterology, vol. 122, no. 6, pp. 1649–1657, 2002. View at Google Scholar · View at Scopus
  2. R. S. Rector, J. P. Thyfault, Y. Wei, and J. A. Ibdah, “Non-alcoholic fatty liver disease and the metabolic syndrome: an update,” World Journal of Gastroenterology, vol. 14, no. 2, pp. 185–192, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Aygun, O. Kocaman, T. Sahin et al., “Evaluation of metabolic syndrome frequency and carotid artery intima-media thickness as risk factors for atherosclerosis in patients with nonalcoholic fatty liver disease,” Digestive Diseases and Sciences, vol. 53, no. 5, pp. 1352–1357, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Rubinstein, J. E. Lavine, and J. B. Schwimmer, “Hepatic, cardiovascular, and endocrine outcomes of the histological subphenotypes of nonalcoholic fatty liver disease,” Seminars in Liver Disease, vol. 28, no. 4, pp. 380–385, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Targher, L. Bertolini, R. Padovani et al., “Relations between carotid artery wall thickness and liver histology in subjects with nonalcoholic fatty liver disease,” Diabetes Care, vol. 29, no. 6, pp. 1325–1330, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. R. K. Schindhelm, M. Diamant, J. M. Dekker, M. E. Tushuizen, T. Teerlink, and R. J. Heine, “Alanine aminotransferase as a marker of non-alcoholic fatty liver disease in relation to type 2 diabetes mellitus and cardiovascular disease,” Diabetes, Metabolism Research and Reviews, vol. 22, no. 6, pp. 437–443, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. W. Dunn, R. Xu, D. L. Wingard et al., “Suspected nonalcoholic fatty liver disease and mortality risk in a population-based cohort study,” American Journal of Gastroenterology, vol. 103, no. 9, pp. 2263–2271, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. J. P. Ong, A. Pitts, and Z. M. Younossi, “Increased overall mortality and liver-related mortality in non-alcoholic fatty liver disease,” Journal of Hepatology, vol. 49, no. 4, pp. 608–612, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. R. S. Rector, J. P. Thyfault, R. T. Morris et al., “Daily exercise increases hepatic fatty acid oxidation and prevents steatosis in Otsuka Long-Evans Tokushima Fatty rats,” American Journal of Physiology - Gastrointestinal and Liver Physiology, vol. 294, no. 3, pp. G619–G626, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. R. S. Rector, J. P. Thyfault, G. M. Uptergrove et al., “Mitochondrial dysfunction precedes insulin resistance and hepatic steatosis and contributes to the natural history of non-alcoholic fatty liver disease in an obese rodent model,” Journal of Hepatology, vol. 52, no. 5, pp. 727–736, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. T. H. Moran and S. Bi, “Hyperphagia and obesity of OLETF rats lacking CCK1 receptors: developmental aspects,” Developmental Psychobiology, vol. 48, no. 5, pp. 360–367, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. S. R. Rector, J. P. Thyfault, M. J. Laye et al., “Cessation of daily exercise dramatically alters precursors of hepatic steatosis in Otsuka Long-Evans Tokushima Fatty (OLETF) rats,” Journal of Physiology, vol. 586, no. 17, pp. 4241–4249, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. He, H. Zhang, and F. H. Fu, “The effects of swimming exercise on high-fat-diet-induced steatohepatitis,” Journal of Sports Medicine and Physical Fitness, vol. 48, no. 2, pp. 259–265, 2008. View at Google Scholar · View at Scopus
  14. M. Sene-Fiorese, F. O. Duarte, F. R. R. Scarmagnani et al., “Efficiency of intermittent exercise on adiposity and fatty liver in rats fed with high-fat diet,” Obesity, vol. 16, no. 10, pp. 2217–2222, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Botolin, Y. Wang, B. Christian, and D. B. Jump, “Docosahexaneoic acid (22:6,n-3) regulates rat hepatocyte SREBP-1 nuclear abundance by Erk- and 26S proteasome-dependent pathways,” Journal of Lipid Research, vol. 47, no. 1, pp. 181–192, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. H. J. Kim, M. Takahashi, and O. Ezaki, “Fish oil feeding decreases mature sterol regulatory element-binding protein 1 (SREBP-1) by down-regulation of SREBP-1c mRNA in mouse liver. A possible mechanism for down-regulation of lipogenic enzyme mRNAs,” Journal of Biological Chemistry, vol. 274, no. 36, pp. 25892–25898, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Pawar and D. B. Jump, “Unsaturated fatty acid regulation of peroxisome proliferator-activated receptor α activity in rat primary hepatoctes,” Journal of Biological Chemistry, vol. 278, no. 38, pp. 35931–35939, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Qin, X. Xie, Y. Fan et al., “Peroxisome proliferator-activated receptor-δ induces insulin-induced gene-1 and suppresses hepatic lipogenesis in obese diabetic mice,” Hepatology, vol. 48, no. 2, pp. 432–441, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Sekiya, N. Yahagi, T. Matsuzaka et al., “Polyunsaturated fatty acids ameliorate hepatic steatosis in obese mice by SREBP-1 suppression,” Hepatology, vol. 38, no. 6, pp. 1529–1539, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Svegliati-Baroni, C. Candelaresi, S. Saccomanno et al., “A model of insulin resistance and nonalcoholic steatohepatitis in rats: role of peroxisome proliferator-activated receptor-α and n-3 polyunsaturated fatty acid treatment on liver injury,” American Journal of Pathology, vol. 169, no. 3, pp. 846–860, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Tanaka, K. Sano, A. Horiuchi, E. Tanaka, K. Kiyosawa, and T. Aoyama, “Highly purified eicosapentaenoic acid treatment improves nonalcoholic steatohepatitis,” Journal of Clinical Gastroenterology, vol. 42, no. 4, pp. 413–418, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Yahagi, H. Shimano, A. H. Hasty et al., “A crucial role of sterol regulatory element-binding protein-1 in the regulation of lipogenic gene expression by polyunsaturated fatty acids,” Journal of Biological Chemistry, vol. 274, no. 50, pp. 35840–35844, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Capanni, F. Calella, M. R. Biagini et al., “Prolonged n-3 polyunsaturated fatty acid supplementation ameliorates hepatic steatosis in patients with non-alcoholic fatty liver disease: a pilot study,” Alimentary Pharmacology and Therapeutics, vol. 23, no. 8, pp. 1143–1151, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Spadaro, O. Magliocco, D. Spampinato et al., “Effects of n-3 polyunsaturated fatty acids in subjects with nonalcoholic fatty liver disease,” Digestive and Liver Disease, vol. 40, no. 3, pp. 194–199, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Shirouchi, K. Nagao, N. Inoue, T. Ohkubo, H. Hibino, and T. Yanagita, “Effect of dietary omega 3 phosphatidylcholine on obesity-related disorders in obese Otsuka Long-Evans Tokushima fatty rats,” Journal of Agricultural and Food Chemistry, vol. 55, no. 17, pp. 7170–7176, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. R. S. Rector, G. M. Uptergrove, S. J. Borengasser et al., “Changes in skeletal muscle mitochondria in response to the development of type 2 diabetes or prevention by daily wheel running in hyperphagic OLETF rats,” American Journal of Physiology, Endocrinology and Metabolism, vol. 298, no. 6, pp. E1179–E1187, 2010. View at Publisher · View at Google Scholar
  27. M. J. Laye, R. Scott Rector, S. J. Borengasser et al., “Cessation of daily wheel running differentially alters fat oxidation capacity in liver, muscle, and adipose tissue,” Journal of Applied Physiology, vol. 106, no. 1, pp. 161–168, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Folch, M. Lees, and G. H. S. Stanley, “A simple method for the isolation and purification of total lipides from animal tissues,” The Journal of Biological Chemistry, vol. 226, no. 1, pp. 497–509, 1957. View at Google Scholar · View at Scopus
  29. Y. Wei, S. E. Clark, E. M. Morris et al., “Angiotensin II-induced non-alcoholic fatty liver disease is mediated by oxidative stress in transgenic TG(mRen2)27(Ren2) rats,” Journal of Hepatology, vol. 49, no. 3, pp. 417–428, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Y. Jong, M. C. Kyung, H. B. Sei et al., “Reduced expression of peroxisome proliferator-activated receptor-α may have an important role in the development of non-alcoholic fatty liver disease,” Journal of Gastroenterology and Hepatology, vol. 19, no. 7, pp. 799–804, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Madsen, A. Garras, G. Asins, D. Serra, F. G. Hegardt, and R. K. Berge, “Mitochondrial 3-hydroxy-3-methylglutaryl coenzyme A synthase and carnitine palmitoyltransferase II as potential control sites for ketogenesis during mitochondrion and peroxisome proliferation,” Biochemical Pharmacology, vol. 57, no. 9, pp. 1011–1019, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Ukropec, I. Klimě, D. Gašperíková et al., “An increase in peroxisomal fatty acid oxidation is not sufficient to prevent tissue lipid accumulation in hHTg rats,” Annals of the New York Academy of Sciences, vol. 967, pp. 71–79, 2002. View at Google Scholar
  33. R. J. A. Wanders, P. Vreken, S. Ferdinandusse et al., “Peroxisomal fatty acid α- and β-oxidation in humans: enzymology, peroxisomal metabolite transporters and peroxisomal diseases,” Biochemical Society Transactions, vol. 29, no. 2, pp. 250–267, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. R. T. Morris, M. J. Laye, S. J. Lees, R. S. Rector, J. P. Thyfault, and F. W. Booth, “Exercise-induced attenuation of obesity, hyperinsulinemia, and skeletal muscle lipid peroxidation in the OLETF rat,” Journal of Applied Physiology, vol. 104, no. 3, pp. 708–715, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. J. R. Levy, J. N. Clore, and W. Stevens, “Dietary n-3 polyunsaturated fatty acids decrease hepatic triglycerides in fischer 344 rats,” Hepatology, vol. 39, no. 3, pp. 608–616, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Nakatani, H. J. Kim, Y. Kaburagi, K. Yasuda, and O. Ezaki, “A low fish oil inhibits SREBP-1 proteolytic cascade, while a high-fish-oil feeding decreases SREBP-1 mRNA in mice liver: relationship to anti-obesity,” Journal of Lipid Research, vol. 44, no. 2, pp. 369–379, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Xu, H. Cho, S. O'Malley, J. H. Y. Park, and S. D. Clarke, “Dietary polyunsaturated fats regulate rat liver sterol regulatory element binding proteins-1 and -2 in three distinct stages and by different mechanisms,” Journal of Nutrition, vol. 132, no. 11, pp. 3333–3339, 2002. View at Google Scholar · View at Scopus
  38. A. González-Périz, A. Planaguma, K. Gronert et al., “Docosahexaenoic acid (DHA) blunts liver injury by conversion to protective lipid mediators: protectin D1 and 17S-hydroxy-DHA,” FASEB Journal, vol. 20, no. 14, pp. 2537–2539, 2006. View at Publisher · View at Google Scholar
  39. K. Fritsche, “Fatty acids as modulators of the immune response,” Annual Review of Nutrition, vol. 26, pp. 45–73, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Fritsche, “Important differences exist in the dose-response relationship between diet and immune cell fatty acids in humans and rodents,” Lipids, vol. 42, no. 11, pp. 961–979, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Nakatani, A. Katsumata, S. Miura, Y. Kamei, and O. Ezaki, “Effects of fish oil feeding and fasting on LXRα/RXRα binding to LXRE in the SREBP-1c promoter in mouse liver,” Biochimica et Biophysica Acta, vol. 1736, no. 1, pp. 77–86, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. G. L. Vega, M. Chandalia, L. S. Szczepaniak, and S. M. Grundy, “Effects of N-3 fatty acids on hepatic triglyceride content in humans,” Journal of Investigative Medicine, vol. 56, no. 5, pp. 780–785, 2008. View at Google Scholar · View at Scopus