Table of Contents Author Guidelines Submit a Manuscript
Journal of Nutrition and Metabolism
Volume 2012, Article ID 545341, 9 pages
http://dx.doi.org/10.1155/2012/545341
Research Article

Accelerated Growth Rate Induced by Neonatal High-Protein Milk Formula Is Not Supported by Increased Tissue Protein Synthesis in Low-Birth-Weight Piglets

1INRA, UMR1348, PEGASE, 35590 Saint-Gilles, France
2INRA, Agrocampus Ouest, UMR1348, PEGASE, 35000 Rennes, France
3INSERM U699, 75018 Paris, France

Received 10 June 2011; Revised 26 August 2011; Accepted 13 October 2011

Academic Editor: Johannes B. van Goudoever

Copyright © 2012 Agnès Jamin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Thureen and W. C. Heird, “Protein and energy requirements of the preterm/low birthweight (LBW) infant,” Pediatric Research, vol. 57, no. 5, pp. 95R–98R, 2005. View at Google Scholar · View at Scopus
  2. J. W. Frank, J. Escobar, A. Suryawan et al., “Protein synthesis and translation initiation factor activation in neonatal pigs fed increasing levels of dietary protein,” Journal of Nutrition, vol. 135, no. 6, pp. 1374–1381, 2005. View at Google Scholar · View at Scopus
  3. C. Gras-Le Guen, C. Boscher, N. Godon et al., “Therapeutic amoxicillin levels achieved with oral administration in term neonates,” European Journal of Clinical Pharmacology, vol. 63, no. 7, pp. 657–662, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Chatelais, A. Jamin, C. G.-L. Guen, J. -P. Lallès, I. le Huërou-Luron, and G. Boudry, “The level of protein in milk formula modifies ileal sensitivity to LPS later in life in a piglet model,” PLoS One, vol. 6, no. 5, pp. 1–10, 2011. View at Publisher · View at Google Scholar
  5. R. Bauer, B. Walter, A. Hoppe et al., “Body weight distribution and organ size in newborn swine (sus scrofa domestica)—a study describing an animal model for asymmetrical intrauterine growth retardation,” Experimental and Toxicologic Pathology, vol. 50, no. 1, pp. 59–65, 1998. View at Google Scholar · View at Scopus
  6. C. Burke, K. Sinclair, G. Cowin et al., “Intrauterine growth restriction due to uteroplacental vascular insufficiency leads to increased hypoxia-induced cerebral apoptosis in newborn piglets,” Brain Research, vol. 1098, no. 1, pp. 19–25, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Bauer, B. Walter, P. Brust, F. Füchtner, and U. Zwiener, “Impact of asymmetric intrauterine growth restriction on organ function in newborn piglets,” European Journal of Obstetrics Gynecology & Reproductive Biology, vol. 110, pp. S40–S49, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Rehfeldt and G. Kuhn, “Consequences of birth weight for postnatal growth performance and carcass quality in pigs as related to myogenesis,” Journal of animal science, vol. 84, pp. 113–123, 2006. View at Google Scholar · View at Scopus
  9. G. Wu, T. L. Ott, D. A. Knabe, and F. W. Bazer, “Amino acid composition of the fetal pig,” Journal of Nutrition, vol. 129, no. 5, pp. 1031–1038, 1999. View at Google Scholar · View at Scopus
  10. H. Quesnel, L. Brossard, A. Valancogne, and N. Quiniou, “Influence of some sow characteristics on within-litter variation of piglet birth weight,” Animal, vol. 2, no. 12, pp. 1842–1849, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Y. Dourmad, J. Noblet, and M. Etienne, “Effect of protein and lysine supply on performance, nitrogen balance, and body composition changes of sows during lactation,” Journal of Animal Science, vol. 76, no. 2, pp. 542–550, 1998. View at Google Scholar · View at Scopus
  12. F. Klobasa, E. Werhahn, and J. E. Butler, “Composition of sow milk during lactation,” Journal of Animal Science, vol. 64, no. 5, pp. 1458–1466, 1987. View at Google Scholar · View at Scopus
  13. A. Jamin, R. D'Inca, N. Le Floc'H et al., “Fatal effects of a neonatal high-protein diet in low-birth-weight piglets used as a model of intrauterine growth restriction,” Neonatology, vol. 97, no. 4, pp. 321–328, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Sève, O. Ballèvre, P. Ganier, J. Noblet, J. Prugnaud, and C. Obled, “Recombinant porcine somatotropin and dietary protein enhance protein synthesis in growing pigs,” Journal of Nutrition, vol. 123, no. 3, pp. 529–540, 1993. View at Google Scholar · View at Scopus
  15. A. Hamard, B. Seve, and N. Le Floc'h, “A moderate threonine deficiency differently affects protein metabolism in tissues of early-weaned piglets,” Comparative Biochemistry and Physiology, Part A, vol. 152, no. 4, pp. 491–497, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951. View at Google Scholar · View at Scopus
  17. J. Leblond, A. Hubert-Buron, C. Bole-Feysot, P. Ducrotte, P. Dechelotte, and M. Coeffier, “Regulation of proteolysis by cytokines in the human intestinal epithelial cell line HCT-8: role of IFNgamma,” Biochimie, vol. 88, pp. 759–765, 2006. View at Google Scholar
  18. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Google Scholar · View at Scopus
  19. A. Suryawan, P. M. J. O'Connor, J. A. Bush, H. V. Nguyen, and T. A. Davis, “Differential regulation of protein synthesis by amino acids and insulin in peripheral and visceral tissues of neonatal pigs,” Amino Acids, vol. 37, no. 1, pp. 97–104, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. T. A. Davis, M. L. Fiorotto, D. G. Burrin et al., “Stimulation of protein synthesis by both insulin and amino acids is unique to skeletal muscle in neonatal pigs,” American Journal of Physiology, vol. 282, no. 4, pp. E880–E890, 2002. View at Google Scholar · View at Scopus
  21. O. A. Adegoke, M. I. McBurney, S. E. Samuels, and V. E. Baracos, “Modulation of intestinal protein synthesis and protease mRNA by luminal and systemic nutrients,” The American Journal of Physiology, vol. 284, no. 6, pp. G1017–G1026, 2003. View at Google Scholar · View at Scopus
  22. A. Hamard, D. Mazurais, G. Boudry, I. Le Huërou-Luron, B. Sève, and N. Le Floc'h, “A moderate threonine deficiency affects gene expression profile, paracellular permeability and glucose absorption capacity in the ileum of piglets,” Journal of Nutritional Biochemistry, vol. 21, no. 10, pp. 914–921, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. Z. Li, B. Cao, B. Zhao, X. Yang, M. Z. Fan, and J. Yang, “Decreased expression of calpain and calpastatin mRNA during development is highly correlated with muscle protein accumulation in neonatal pigs,” Comparative Biochemistry and Physiology, Part A, vol. 152, no. 4, pp. 498–503, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Wang, L. Chen, D. Li et al., “Intrauterine growth restriction affects the proteomes of the small intestine, liver, and skeletal muscle in newborn pigs,” Journal of Nutrition, vol. 138, no. 1, pp. 60–66, 2008. View at Google Scholar · View at Scopus
  25. D. Bechet, A. Tassa, D. Taillandier, L. Combaret, and D. Attaix, “Lysosomal proteolysis in skeletal muscle,” International Journal of Biochemistry and Cell Biology, vol. 37, no. 10, pp. 2098–2114, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Boukhettala, J. Leblond, S. Claeyssens et al., “Methotrexate induces intestinal mucositis and alters gut protein metabolism independently of reduced food intake,” The American Journal of Physiology, vol. 296, no. 1, pp. E182–E190, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. D. A. Potter, A. Srirangam, K. A. Fiacco et al., “Calpain regulates enterocyte brush border actin assembly and pathogenic Escherichia coli-mediated effacement,” Journal of Biological Chemistry, vol. 278, no. 32, pp. 30403–30412, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. G. M. Ekstrom and B. R. Westrom, “Cathepsin B and D activities in intestinal mucosa during postnatal development in pigs. Relation to intestinal uptake and transmission of macromolecules,” Biology of the Neonate, vol. 59, no. 5, pp. 314–321, 1991. View at Google Scholar · View at Scopus
  29. M. Kadowaki and T. Kanazawa, “Amino acids as regulators of proteolysis,” Journal of Nutrition, vol. 133, no. 6, pp. 2052S–2056S, 2003. View at Google Scholar · View at Scopus
  30. N. C. Raiha, K. Heinonen, D. K. Rassin, and G. E. Gaull, “Milk protein quantity and quality in low birthweight infants: I. Metabolic responses and effects on growth,” Pediatrics, vol. 57, no. 5, pp. 659–674, 1976. View at Google Scholar · View at Scopus
  31. S. C. Kalhan and D. M. Bier, “Protein and amino acid metabolism in the human newborn,” Annual Review of Nutrition, vol. 28, pp. 389–410, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. O. Sarr, F. Gondret, A. Jamin, I. Le Huërou-Luron, and I. Louveau, “A high-protein neonatal formula induces a temporary reduction of adiposity and changes later adipocyte physiology,” The American Journal of Physiology, vol. 300, no. 2, pp. R387–R397, 2011. View at Publisher · View at Google Scholar
  33. Q. Shen, H. Xu, L. M. Wei, J. Chen, and H. M. Liu, “Intrauterine growth restriction and postnatal high-protein diet affect the kidneys in adult rats,” Nutrition, vol. 27, no. 3, pp. 364–371, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. K. R. Poore and A. L. Fowden, “The effects of birth weight and postnatal growth patterns on fat depth and plasma leptin concentrations in juvenile and adult pigs,” Journal of Physiology, vol. 558, no. 1, pp. 295–304, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. M. S. Patel and M. Srinivasan, “Metabolic programming: causes and consequences,” Journal of Biological Chemistry, vol. 277, no. 3, pp. 1629–1632, 2002. View at Publisher · View at Google Scholar · View at Scopus