Table of Contents Author Guidelines Submit a Manuscript
Journal of Nutrition and Metabolism
Volume 2012, Article ID 802924, 9 pages
Clinical Study

Impact of Ramadan Intermittent Fasting on Oxidative Stress Measured by Urinary 15- -Isoprostane

1Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, P.O. Box 2440, Hail, Saudi Arabia
2Department of Nutrition, Faculty of Pharmacy and Medical Sciences, Petra University, P.O. Box 961343, Amman, Jordan
3Department of Clinical Pharmacy and Biopharmaceutics, Faculty of Pharmacy, The University of Jordan, P.O. Box 11942, Amman, Jordan
4Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, The Hashemite University, P.O. Box 591504, Zarqa, Jordan

Received 14 July 2012; Revised 5 September 2012; Accepted 23 September 2012

Academic Editor: Heiner Boeing

Copyright © 2012 Mo'ez Al-Islam Ezzat Faris et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Fasting and caloric restriction have been associated with reduced incidence of chronic diseases and cancers. These effects have been attributed to reduced oxidative stress. Since Ramadan intermittent fasting (RIF) has been associated with reduced caloric intake, it was hypothesized that RIF would alleviate oxidative stress in healthy volunteers. The study was designed to elucidate the impact of RIF on oxidative stress measured by 15- -Isoprostane (15FIP). Fifty healthy subjects (23 men and 27 women) who intended to fast Ramadan were recruited. Urine and serum sampling and anthropometric and dietary assessments were conducted one week before Ramadan (T0), at the end of the third week of Ramadan (T1), and one month after Ramadan (T2). Biochemical measurements included urinary 15FIP, creatinine, and hematological indices. Results revealed that the urinary level of 15FIP measured at T0 was normal, while they showed a significantly ( ) higher level when measured at T1 concomitant with a significant ( ) increase in the body weight and total body fat percent. In conclusion, results suggest that increased body weight is associated with increased lipid peroxidation and oxidative stress, and the impact of RIF on oxidative stress is mediated by the changes in body weight at the end of the month.