Table of Contents Author Guidelines Submit a Manuscript
Journal of Nutrition and Metabolism
Volume 2012, Article ID 851362, 28 pages
http://dx.doi.org/10.1155/2012/851362
Review Article

Beta Glucan: Health Benefits in Obesity and Metabolic Syndrome

Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2

Received 9 June 2011; Accepted 27 October 2011

Academic Editor: Frank Thies

Copyright © 2012 D. El Khoury et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. World Health Organization: Obesity and overweight: Fact Sheet, http://www.who.int/hpr/NPH/docs/gs_obesity.pdf.
  2. K. Fujioka, “Management of obesity as a chronic disease: nonpharmacologic, pharmacologic, and surgical options,” Obesity Research, vol. 10, no. 2, 2002. View at Google Scholar · View at Scopus
  3. J. M. Torpy, C. Lynm, and R. M. Glass, “JAMA patient page. The metabolic syndrome,” Journal of the American Medical Association, vol. 295, no. 7, p. 850, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Vrolix and R. P. Mensink, “Effects of glycemic load on metabolic risk markers in subjects at increased risk of developing metabolic syndrome,” The American Journal of Clinical Nutrition, vol. 92, no. 2, pp. 366–374, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Esposito, R. Marfella, M. Ciotola et al., “Effect of a Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial,” Journal of the American Medical Association, vol. 292, no. 12, pp. 1440–1446, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. N. M. McKeown, J. B. Meigs, S. Liu, E. Saltzman, P. W. F. Wilson, and P. F. Jacques, “Carbohydrate nutrition, insulin resistance, and the prevalence of the metabolic syndrome in the framingham offspring cohort,” Diabetes Care, vol. 27, no. 2, pp. 538–546, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Azadbakht, P. Mirmiran, A. Esmaillzadeh, T. Azizi, and F. Azizi, “Beneficial effects of a dietary approaches to stop hypertension eating plan on features of the metabolic syndrome,” Diabetes Care, vol. 28, no. 12, pp. 2823–2831, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Esmaillzadeh, P. Mirmiran, and F. Azizi, “Whole-grain consumption and the metabolic syndrome: a favorable association in Tehranian adults,” European Journal of Clinical Nutrition, vol. 59, no. 3, pp. 353–362, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. R. D. Freire, M. A. Cardoso, S. G. A. Gimeno, and S. R. G. Ferreira, “Dietary fat is associated with metabolic syndrome in Japanese Brazilians,” Diabetes Care, vol. 28, no. 7, pp. 1779–1785, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. D. E. Laaksonen, L. K. Toppinen, K. S. Juntunen et al., “Dietary carbohydrate modification enhances insulin secretion in persons with the metabolic syndrome,” American Journal of Clinical Nutrition, vol. 82, no. 6, pp. 1218–1227, 2005. View at Google Scholar · View at Scopus
  11. N. R. Sahyoun, P. F. Jacques, X. L. Zhang, W. Juan, and N. M. McKeown, “Whole-grain intake is inversely associated with the metabolic syndrome and mortality in older adults,” American Journal of Clinical Nutrition, vol. 83, no. 1, pp. 124–131, 2006. View at Google Scholar · View at Scopus
  12. D. Charalampopoulos, R. Wang, S. S. Pandiella, and C. Webb, “Application of cereals and cereal components in functional foods: a review,” International Journal of Food Microbiology, vol. 79, no. 1-2, pp. 131–141, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Demirbas, “β-Glucan and mineral nutrient contents of cereals grown in Turkey,” Food Chemistry, vol. 90, no. 4, pp. 773–777, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. A. K. Holtekjølen, A. K. Uhlen, E. Bråthen, S. Sahlstrøm, and S. H. Knutsen, “Contents of starch and non-starch polysaccharides in barley varieties of different origin,” Food Chemistry, vol. 94, no. 3, pp. 348–358, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. I. M. Stuart, L. Loi, and G. B. Fincher, “Immunological comparison of (1-3,1-4)-beta-glucan endohydrolases in germinating cereals,” Journal of Cereal Science, vol. 6, no. 1, pp. 45–52, 1987. View at Google Scholar
  16. A. Bacic, G. B. Fincher, and B. A. Stone, Chemistry, Biochemistry, and Biology of (1-3)-[beta]-Glucans and Related Polysaccharides, Academic Press, Amsterdam, The Netherlands, 1st edition, 2009.
  17. J. Teas, “The dietary intake of Laminaria, a brown seaweed, and breast cancer prevention,” Nutrition and Cancer, vol. 4, no. 3, pp. 217–222, 1983. View at Google Scholar · View at Scopus
  18. S. P. Wasser and A. L. Weis, “Therapeutic effects of substances occurring in higher basidiomycetes mushrooms: a modern perspective,” Critical Reviews in Immunology, vol. 19, no. 1, pp. 65–96, 1999. View at Google Scholar · View at Scopus
  19. Statistics Canada: National supply and disposition of grains in Canada, 2005-2006 to 2010-2011—Barley, http://www.statcan.gc.ca/pub/22-002-x/2011003/t009-eng.pdf.
  20. Statistics Canada: National supply and disposition of grains in Canada, 2005-2006 to 2010-2011—Oats, http://www.statcan.gc.ca/pub/22-002-x/2011003/t008-eng.pdf.
  21. FAOSTAT: food and agricultural commodities production. Countries by commodity, http://faostat.fao.org/site/339/default.aspx.
  22. A. Lazaridou and C. G. Biliaderis, “Molecular aspects of cereal β-glucan functionality: physical properties, technological applications and physiological effects,” Journal of Cereal Science, vol. 46, no. 2, pp. 101–118, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. P. J. Wood, “Evaluation of oat bran as a soluble fibre source. Characterization of oat β-glucan and its effects on glycaemic response,” Carbohydrate Polymers, vol. 25, no. 4, pp. 331–336, 1994. View at Google Scholar · View at Scopus
  24. C. S. Brennan and L. J. Cleary, “The potential use of cereal (1→3, 1→4)-β-d-glucans as functional food ingredients,” Journal of Cereal Science, vol. 42, no. 1, pp. 1–13, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. G. O. Phillips and S. W. Cui, “An introduction: evolution and finalisation of the regulatory definition of dietary fibre,” Food Hydrocolloids, vol. 25, no. 2, pp. 139–143, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Champ, A. M. Langkilde, F. Brouns, B. Kettlitz, and Y. Le Bail-Collet, “Advances in dietary fibre characterisation. 2. Consumption, chemistry, physiology and measurement of resistant starch; implications for health and food labelling,” Nutrition Research Reviews, vol. 16, no. 2, pp. 143–161, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Trowell, “Ischemic heart disease and dietary fiber,” American Journal of Clinical Nutrition, vol. 25, no. 9, pp. 926–932, 1972. View at Google Scholar · View at Scopus
  28. H. Trowell, D. A. Southgate, T. M. Wolever, A. R. Leeds, M. A. Gassull, and D. J. Jenkins, “Letter: dietary fibre redefined,” The Lancet, vol. 1, no. 7966, p. 967, 1976. View at Google Scholar · View at Scopus
  29. M. Champ, A. M. Langkilde, F. Brouns, B. Kettlitz, and Y. L. B. Collet, “Advances in dietary fibre characterisation. 1. Definition of dietary fibre, physiological relevance, health benefits and analytical aspects,” Nutrition Research Reviews, vol. 16, no. 1, pp. 71–82, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. Codex Alimentarius Commission: ALINORM 10/33/26, Report of the 31st Session of the Codex Committee on Nutrition and Foods for Special Dietary Uses, Düsseldorf, Germany, 2009, https://www.ccnfsdu.de/fileadmin/user_upload/Download/2009/al33_26e.pdf.
  31. D. J. A. Jenkins, T. M. S. Wolever, and A. R. Leeds, “Dietary fibres, fibre analogues, and glucose tolerance: importance of viscosity,” British Medical Journal, vol. 1, no. 6124, pp. 1392–1394, 1978. View at Google Scholar · View at Scopus
  32. P. J. Wood, J. T. Braaten, F. W. Scott, K. D. Riedel, M. S. Wolynetz, and M. W. Collins, “Effect of dose and modification of viscous properties of oat gum on plasma glucose and insulin following an oral glucose load,” British Journal of Nutrition, vol. 72, no. 5, pp. 731–743, 1994. View at Publisher · View at Google Scholar · View at Scopus
  33. J. M. W. Wong, R. De Souza, C. W. C. Kendall, A. Emam, and D. J. A. Jenkins, “Colonic health: fermentation and short chain fatty acids,” Journal of Clinical Gastroenterology, vol. 40, no. 3, pp. 235–243, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Macfarlane, G. T. Macfarlane, and J. H. Cummings, “Review article: prebiotics in the gastrointestinal tract,” Alimentary Pharmacology and Therapeutics, vol. 24, no. 5, pp. 701–714, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. M. B. Roberfroid, “Inulin-type fructans: functional food ingredients,” Journal of Nutrition, vol. 137, no. 11, 2007. View at Google Scholar · View at Scopus
  36. J. H. Cummings, M. B. Roberfroid, H. Andersson et al., “A new look at dietary carbohydrate: chemistry, physiology and health,” European Journal of Clinical Nutrition, vol. 51, no. 7, pp. 417–423, 1997. View at Google Scholar · View at Scopus
  37. K. N. Englyst and H. N. Englyst, “Carbohydrate bioavailability,” British Journal of Nutrition, vol. 94, no. 1, pp. 1–11, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. D. M. Sullivan and D. E. Carpenter, Methods of Analysis for Nutrition Labeling, AOAC International, Arlington, Va, USA, 1993.
  39. S. Cho, J. W. DeVries, and L. Prosky, Dietary Fiber Analysis and Applications, AOAC International, Gaithersburg, Md, USA, 1997.
  40. J. H. Cummings and A. M. Stephen, “Carbohydrate terminology and classification,” European Journal of Clinical Nutrition, vol. 61, no. 1, pp. S5–S18, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. K. N. Englyst, S. Liu, and H. N. Englyst, “Nutritional characterization and measurement of dietary carbohydrates,” European Journal of Clinical Nutrition, vol. 61, no. 1, pp. S19–S39, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. J. H. Cummings, “Short chain fatty acids in the human colon,” Gut, vol. 22, no. 9, pp. 763–779, 1981. View at Google Scholar · View at Scopus
  43. J. H. Cummings, H. N. Englyst, and H. S. Wiggins, “The role of carbohydrates in lower gut function,” Nutrition Reviews, vol. 44, no. 2, pp. 50–54, 1986. View at Google Scholar · View at Scopus
  44. G. R. Gibson, H. M. Probert, J. Van Loo, R. A. Rastall, and M. B. Roberfroid, “Dietary modulation of the human colonic microbiota: updating the concept of prebiotics,” Nutrition Research Reviews, vol. 17, no. 2, pp. 259–275, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. L. C. Douglas and M. E. Sanders, “Probiotics and prebiotics in dietetics practice,” Journal of the American Dietetic Association, vol. 108, no. 3, pp. 510–521, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. S. C. Lee, “Dietary fiber analysis for nutrition labelling,” Cereal Foods World, vol. 37, pp. 765–771, 1992. View at Google Scholar
  47. B. V. McCleary and R. Codd, “Measurement of (1-3),(1-4)-beta-D-glucan in barley and oats-a streamlined enzymatic procedure,” Journal of the Science of Food and Agriculture, vol. 55, no. 2, pp. 303–312, 1991. View at Google Scholar
  48. B. V. McCleary, “An integrated procedure for the measurement of total dietary fibre (including resistant starch), non-digestible oligosaccharides and available carbohydrates,” Analytical and Bioanalytical Chemistry, vol. 389, no. 1, pp. 291–308, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. B. V. McCleary, J. W. DeVries, J. I. Rader et al., “Determination of total dietary fiber (CODEX Definition) by enzymatic-gravimetric method and liquid chromatography: collaborative study,” Journal of AOAC International, vol. 93, no. 1, pp. 221–233, 2010. View at Google Scholar · View at Scopus
  50. L. C. Zygmunt and S. D. Paisley, “Enzymatic method for determination of (1–>3)(1–>4)-beta-D-glucans in grains and cereals: collaborative study,” Journal of AOAC International, vol. 76, no. 5, pp. 1069–1082, 1993. View at Google Scholar · View at Scopus
  51. C. Rampitsch, N. Ames, J. Storsley, and L. Marien, “Development of a monoclonal antibody-based enzyme-linked immunosorbent assay to quantify soluble β-glucans in oats and barley,” Journal of Agricultural and Food Chemistry, vol. 51, no. 20, pp. 5882–5887, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. Z. Czuchajowska, J. Szczodrak, and Y. Pomeranz, “Characterization and estimation of barley polysaccharides by near-infrared spectroscopy. 1. Barleys, starches, and beta-deuterium-glucans,” Cereal Chemistry, vol. 69, no. 4, pp. 413–418, 1992. View at Google Scholar
  53. K. G. Jørgensen, “Quantification of high molecular weight (1→3)(1→4)-β-d-glucan using Calcofluor complex formation and flow injection analysis. I. analytical principle and its standardization,” Carlsberg Research Communications, vol. 53, no. 5, pp. 277–285, 1988. View at Publisher · View at Google Scholar · View at Scopus
  54. C. S. Brennan, “Dietary fibre, glycaemic response, and diabetes,” Molecular Nutrition and Food Research, vol. 49, no. 6, pp. 560–570, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. L. Brown, B. Rosner, W. W. Willett, and F. M. Sacks, “Cholesterol-lowering effects of dietary fiber: a meta-analysis,” American Journal of Clinical Nutrition, vol. 69, no. 1, pp. 30–42, 1999. View at Google Scholar · View at Scopus
  56. G. Önning, A. Wallmark, M. Persson, B. Åkesson, S. Elmståhl, and R. Öste, “Consumption of oat milk for 5 weeks lowers serum cholesterol and LDL cholesterol in free-living men with moderate hypercholesterolemia,” Annals of Nutrition and Metabolism, vol. 43, no. 5, pp. 301–309, 1999. View at Google Scholar · View at Scopus
  57. J. W. Anderson, M. H. Davidson, L. Blonde et al., “Long-term cholesterol-lowering effects of psyllium as an adjunct to diet therapy in the treatment of hypercholesterolemia,” American Journal of Clinical Nutrition, vol. 71, no. 6, pp. 1433–1438, 2000. View at Google Scholar · View at Scopus
  58. J. L. Slavin, “Dietary fiber and body weight,” Nutrition, vol. 21, no. 3, pp. 411–418, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Liu, H. D. Sesso, J. E. Manson, W. C. Willett, and J. E. Buring, “Is intake of breakfast cereals related to total and cause-specific mortality in men?” American Journal of Clinical Nutrition, vol. 77, no. 3, pp. 594–599, 2003. View at Google Scholar · View at Scopus
  60. M. K. Jensen, P. Koh-Banerjee, F. B. Hu et al., “Intakes of whole grains, bran, and germ and the risk of coronary heart disease in men,” American Journal of Clinical Nutrition, vol. 80, no. 6, pp. 1492–1499, 2004. View at Google Scholar · View at Scopus
  61. L. Qi, R. M. Van Dam, S. Liu, M. Franz, C. Mantzoros, and F. B. Hu, “Whole-grain, bran, and cereal fiber intakes and markers of systemic inflammation in diabetic women,” Diabetes Care, vol. 29, no. 2, pp. 207–211, 2006. View at Google Scholar · View at Scopus
  62. J. D. Artiss, K. Brogan, M. Brucal, M. Moghaddam, and K. L. C. Jen, “The effects of a new soluble dietary fiber on weight gain and selected blood parameters in rats,” Metabolism, vol. 55, no. 2, pp. 195–202, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Galisteo, R. Morón, L. Rivera, R. Romero, A. Anguera, and A. Zarzuelo, “Plantago ovata husks-supplemented diet ameliorates metabolic alterations in obese Zucker rats through activation of AMP-activated protein kinase. Comparative study with other dietary fibers,” Clinical Nutrition, vol. 29, no. 2, pp. 261–267, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. D. G. Hardie, “Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status,” Endocrinology, vol. 144, no. 12, pp. 5179–5183, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. T. Steemburgo, V. Dall'Alba, J. C. Almeida, T. Zelmanovitz, J. L. Gross, and M. J. de Azevedo, “Intake of soluble fibers has a protective role for the presence of metabolic syndrome in patients with type 2 diabetes,” European Journal of Clinical Nutrition, vol. 63, no. 1, pp. 127–133, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. K. Esposito, F. Nappo, F. Giugliano et al., “Meal modulation of circulating interleukin 18 and adiponectin concentrations in healthy subjects and in patients with type 2 diabetes mellitus,” American Journal of Clinical Nutrition, vol. 78, no. 6, pp. 1135–1140, 2003. View at Google Scholar · View at Scopus
  67. L. Qi, E. Rimm, S. Liu, N. Rifai, and F. B. Hu, “Dietary glycemic index, glycemic load, cereal fiber, and plasma adiponectin concentration in diabetic men,” Diabetes Care, vol. 28, no. 5, pp. 1022–1028, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. C. S. Mantzoros, T. Li, J. E. Manson, J. B. Meigs, and F. B. Hu, “Circulating adiponectin levels are associated with better glycemic control, more favorable lipid profile, and reduced inflammation in women with type 2 diabetes,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 8, pp. 4542–4548, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. C. M. Ripsin, J. M. Keenan, D. R. Jacobs et al., “Oat products and lipid lowering: a meta-analysis,” Journal of the American Medical Association, vol. 267, no. 24, pp. 3317–3325, 1992. View at Publisher · View at Google Scholar · View at Scopus
  70. J. Hallfrisch and K. M. Behall, “Physiological responses of men and women to barley and oat extracts (nu-trimX). I. Breath hydrogen, methane, and gastrointestinal symptoms,” Cereal Chemistry, vol. 80, no. 1, pp. 76–79, 2003. View at Google Scholar · View at Scopus
  71. L. Barsanti, V. Passarelli, V. Evangelista, A. M. Frassanito, and P. Gualtieri, “Chemistry, physico-chemistry and applications linked to biological activities of β-glucans,” Natural Product Reports, vol. 28, no. 3, pp. 457–466, 2011. View at Publisher · View at Google Scholar
  72. D. B. Zeković, S. Kwiatkowski, M. M. Vrvić, D. Jakovljević, and C. A. Moran, “Natural and modified (1→3)-β-D-glucans in health promotion and disease alleviation,” Critical Reviews in Biotechnology, vol. 25, no. 4, pp. 205–230, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. M. McIntosh, B. A. Stone, and V. A. Stanisich, “Curdlan and other bacterial (1→3)-β-D-glucans,” Applied Microbiology and Biotechnology, vol. 68, no. 2, pp. 163–173, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. P. J. Wood, “Cereal B-glucans in diet and health,” Journal of Cereal Science, vol. 46, pp. 230–238, 2007. View at Google Scholar
  75. J. J. Volman, J. D. Ramakers, and J. Plat, “Dietary modulation of immune function by β-glucans,” Physiology and Behavior, vol. 94, no. 2, pp. 276–284, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. M. W. Breedveld and K. J. Miller, “Cyclic β-glucans of members of the family Rhizobiaceae,” Microbiological Reviews, vol. 58, no. 2, pp. 145–161, 1994. View at Google Scholar · View at Scopus
  77. S. Soltanian, E. Stuyven, E. Cox, P. Sorgeloos, and P. Bossier, “Beta-glucans as immunostimulant in vertebrates and invertebrates,” Critical Reviews in Microbiology, vol. 35, no. 2, pp. 109–138, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. V. E. C. Ooi and F. Liu, “Immunomodulation and anti-cancer activity of polysaccharide-protein complexes,” Current Medicinal Chemistry, vol. 7, no. 7, pp. 715–729, 2000. View at Google Scholar · View at Scopus
  79. D. L. Topping and P. M. Clifton, “Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides,” Physiological Reviews, vol. 81, no. 3, pp. 1031–1064, 2001. View at Google Scholar · View at Scopus
  80. G. Kedia, J. A. Vázquez, and S. S. Pandiella, “Evaluation of the fermentability of oat fractions obtained by debranning using lactic acid bacteria,” Journal of Applied Microbiology, vol. 105, no. 4, pp. 1227–1237, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Havrlentova, Z. Petrulakova, A. Burgarova et al., “Cereal B-glucans and their significance for the preparation of functional foods—a review,” Czech Journal of Food Sciences, vol. 29, no. 1, pp. 1–14, 2011. View at Google Scholar
  82. L. Virkki, L. Johansson, M. Ylinen, S. Maunu, and P. Ekholm, “Structural characterization of water-insoluble nonstarchy polysaccharides of oats and barley,” Carbohydrate Polymers, vol. 59, no. 3, pp. 357–366, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. J. A. Bohn and J. N. BeMiller, “(1→3)-β-d-Glucans as biological response modifiers: a review of structure-functional activity relationships,” Carbohydrate Polymers, vol. 28, no. 1, pp. 3–14, 1995. View at Google Scholar · View at Scopus
  84. G. H. Fleet and D. J. Manners, “Isolation and composition of an alkali soluble glucan from the cell walls of Saccharomyces cerevisiae,” Journal of General Microbiology, vol. 94, no. 1, pp. 180–192, 1976. View at Google Scholar · View at Scopus
  85. T. E. Nelson and B. A. Lewis, “Separation and characterization of the soluble and insoluble components of insoluble laminaran,” Carbohydrate Research, vol. 33, no. 1, pp. 63–74, 1974. View at Google Scholar · View at Scopus
  86. L. Johansson, L. Virkki, S. Maunu, M. Lehto, P. Ekholm, and P. Varo, “Structural characterization of water soluble β-glucan of oat bran,” Carbohydrate Polymers, vol. 42, no. 2, pp. 143–148, 2000. View at Publisher · View at Google Scholar · View at Scopus
  87. Y. Ren, P. R. Ellis, S. B. Ross-Murphy, Q. Wang, and P. J. Wood, “Dilute and semi-dilute solution properties of (1→3), (1→4)-β-D-glucan, the endosperm cell wall polysaccharide of oats (Avena sativa L.),” Carbohydrate Polymers, vol. 53, no. 4, pp. 401–408, 2003. View at Publisher · View at Google Scholar · View at Scopus
  88. G. D. Brown and S. Gordon, “Fungal β-glucans and mammalian immunity,” Immunity, vol. 19, no. 3, pp. 311–315, 2003. View at Publisher · View at Google Scholar · View at Scopus
  89. E. Sonck, E. Stuyven, B. Goddeeris, and E. Cox, “The effect of β-glucans on porcine leukocytes,” Veterinary Immunology and Immunopathology, vol. 135, no. 3-4, pp. 199–207, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. V. Vetvicka and J. Vetvickova, “Effects of yeast-derived β-glucans on blood cholesterol and macrophage functionality Glucans, blood cholesterol, and macrophage function V. Vetvicka and J. Vetvickova,” Journal of Immunotoxicology, vol. 6, no. 1, pp. 30–35, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. V. Vetvicka, B. Dvorak, J. Vetvickova et al., “Orally administered marine (1→3)-β-d-glucan Phycarine stimulates both humoral and cellular immunity,” International Journal of Biological Macromolecules, vol. 40, no. 4, pp. 291–298, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. A. O. Tzianabos, “Polysaccharide immunomodulators as therapeutic agents: structural aspects and biologic function,” Clinical Microbiology Reviews, vol. 13, no. 4, pp. 523–533, 2000. View at Publisher · View at Google Scholar · View at Scopus
  93. G. Hetland, N. Ohno, I. S. Aaberge, and M. Løvik, “Protective effect of β-glucan against systemic Streptococcus pneumoniae infection in mice,” FEMS Immunology and Medical Microbiology, vol. 27, no. 2, pp. 111–116, 2000. View at Publisher · View at Google Scholar · View at Scopus
  94. S. Saegusa, M. Totsuka, S. Kaminogawa, and T. Hosoi, “Candida albicans and Saccharomyces cerevisiae induce interleukin-8 production from intestinal epithelial-like Caco-2 cells in the presence of butyric acid,” FEMS Immunology and Medical Microbiology, vol. 41, no. 3, pp. 227–235, 2004. View at Publisher · View at Google Scholar · View at Scopus
  95. T. J. Babineau, A. Hackford, A. Kenler et al., “A phase II multicenter, double-blind, randomized, placebo-controlled study of three dosages of an immunomodulator (PGG-glucan) in high-risk surgical patients,” Archives of Surgery, vol. 129, no. 11, pp. 1204–1210, 1994. View at Google Scholar · View at Scopus
  96. T. J. Babineau, P. Marcello, W. Swails, A. Kenler, B. Bistrian, and R. A. Forse, “Randomized phase I/II trial of a macrophage-specific immunomodulator (PGG-glucan) in high-risk surgical patients,” Annals of Surgery, vol. 220, no. 5, pp. 601–609, 1994. View at Google Scholar · View at Scopus
  97. E. P. Dellinger, T. J. Babineau, P. Bleicher et al., “Effect of PGG-glucan on the rate of serious postoperative infection or death observed after high-risk gastrointestinal operations,” Archives of Surgery, vol. 134, no. 9, pp. 977–983, 1999. View at Publisher · View at Google Scholar
  98. R. Nicolosi, S. J. Bell, B. R. Bistrian, I. Greenberg, R. A. Forse, and G. L. Blackburn, “Plasma lipid changes after supplementation with β-glucan fiber from yeast,” American Journal of Clinical Nutrition, vol. 70, no. 2, pp. 208–212, 1999. View at Google Scholar · View at Scopus
  99. A. M. Neyrinck, S. Possemiers, W. Verstraete, F. De Backer, P. D. Cani, and N. M. Delzenne, “Dietary modulation of clostridial cluster XIVa gut bacteria (Roseburia spp.) by chitin-glucan fiber improves host metabolic alterations induced by high-fat diet in mice,” Journal of Nutritional Biochemistry. In press. View at Publisher · View at Google Scholar
  100. P. J. Wood and M. U. Beer, “Functional oat products,” in Functional Foods, Biochemical and Processing Aspects, J. Mazza, Ed., Technomic Publishing Company, Lancester, UK, 1998. View at Google Scholar
  101. P. J. Wood, M. U. Beer, and G. Butler, “Evaluation of role of concentration and molecular weight of oat β-glucan in determining effect of viscosity on plasma glucose and insulin following an oral glucose load,” British Journal of Nutrition, vol. 84, no. 1, pp. 19–23, 2000. View at Google Scholar · View at Scopus
  102. K. Autio, “Functional aspects of cell wall polysaccharides,” in Carbohydrates in Food, A.-C. Eliasson, Ed., Marcel Dekker, New York, NY, USA, 1996. View at Google Scholar
  103. H. Xu, Y. Song, N. C. You et al., “Prevalence and clustering of metabolic risk factors for type 2 diabetes among Chinese adults in Shanghai, China,” BMC Public Health, vol. 10, article 683, 2010. View at Publisher · View at Google Scholar · View at Scopus
  104. H. Hanai, M. Ikuma, Y. Sato et al., “Long-term effects of water-soluble corn bran hemicellulose on glucose tolerance in obese and non-obese patients: improved insulin sensitivity and glucose metabolism in obese subjects,” Bioscience, Biotechnology and Biochemistry, vol. 61, no. 8, pp. 1358–1361, 1997. View at Google Scholar · View at Scopus
  105. I. Thorsdottir, H. Andersson, and S. Einarsson, “Sugar beet fiber in formula diet reduces postprandial blood glucose, serum insulin and serum hydroxyproline,” European Journal of Clinical Nutrition, vol. 52, no. 2, pp. 155–156, 1998. View at Google Scholar · View at Scopus
  106. J. W. Anderson, L. D. Allgood, J. Turner, P. R. Oeltgen, and B. P. Daggy, “Effects of psyllium on glucose and serum lipid responses in men with type 2 diabetes and hypercholesterolemia,” American Journal of Clinical Nutrition, vol. 70, no. 4, pp. 466–473, 1999. View at Google Scholar · View at Scopus
  107. M. Sierra, J. J. Garcia, N. Fernández et al., “Effects of ispaghula husk and guar gum on postprandial glucose and insulin concentrations in healthy subjects,” European Journal of Clinical Nutrition, vol. 55, no. 4, pp. 235–243, 2001. View at Publisher · View at Google Scholar · View at Scopus
  108. M. Sierra, J. J. García, N. Fernández et al., “Therapeutic effects of psyllium in type 2 diabetic patients,” European Journal of Clinical Nutrition, vol. 56, no. 9, pp. 830–842, 2002. View at Publisher · View at Google Scholar
  109. K. S. Juntunen, L. K. Niskanen, K. H. Liukkonen, K. S. Poutanen, J. J. Holst, and H. M. Mykkänen, “Postprandial glucose, insulin, and incretin responses to grain products in healthy subjects,” American Journal of Clinical Nutrition, vol. 75, no. 2, pp. 254–262, 2002. View at Google Scholar · View at Scopus
  110. M. Alminger and C. Eklund-Jonsson, “Whole-grain cereal products based on a high-fibre barley or oat genotype lower post-prandial glucose and insulin responses in healthy humans,” European Journal of Nutrition, vol. 47, no. 6, pp. 294–300, 2008. View at Publisher · View at Google Scholar · View at Scopus
  111. C. W. C. Kendall, A. Esfahani, A. J. Hoffman et al., “Effect of novel maize-based dietary fibers on postprandial glycemia and insulinemia,” Journal of the American College of Nutrition, vol. 27, no. 6, pp. 711–718, 2008. View at Google Scholar · View at Scopus
  112. A. L. Garcia, B. Otto, S. C. Reich et al., “Arabinoxylan consumption decreases postprandial serum glucose, serum insulin and plasma total ghrelin response in subjects with impaired glucose tolerance,” European Journal of Clinical Nutrition, vol. 61, no. 3, pp. 334–341, 2007. View at Publisher · View at Google Scholar · View at Scopus
  113. Y. J. Song, M. Sawamura, K. Ikeda, S. Igawa, and Y. Yamori, “Soluble dietary fibre improves insulin sensitivity by increasing muscle GLUT-4 content in stroke-prone spontaneously hypertensive rats,” Clinical and Experimental Pharmacology and Physiology, vol. 27, no. 1-2, pp. 41–45, 2000. View at Publisher · View at Google Scholar · View at Scopus
  114. H. Mäkeläinen, H. Anttila, J. Sihvonen et al., “The effect of β-glucan on the glycemic and insulin index,” European Journal of Clinical Nutrition, vol. 61, no. 6, pp. 779–785, 2007. View at Publisher · View at Google Scholar
  115. K. C. Maki, R. Galant, P. Samuel et al., “Effects of consuming foods containing oat β-glucan on blood pressure, carbohydrate metabolism and biomarkers of oxidative stress in men and women with elevated blood pressure,” European Journal of Clinical Nutrition, vol. 61, no. 6, pp. 786–795, 2007. View at Publisher · View at Google Scholar · View at Scopus
  116. L. Tappy, E. Gügolz, and P. Würsch, “Effects of breakfast cereals containing various amounts of β-glucan fibers on plasma glucose and insulin responses in NIDDM subjects,” Diabetes Care, vol. 19, no. 8, pp. 831–834, 1996. View at Google Scholar · View at Scopus
  117. N. Tapola, H. Karvonen, L. Niskanen, M. Mikola, and E. Sarkkinen, “Glycemic responses of oat bran products in type 2 diabetic patients,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 15, no. 4, pp. 255–261, 2005. View at Publisher · View at Google Scholar · View at Scopus
  118. J. Hallfrisch, D. J. Scholfield, and K. M. Behall, “Diets containing soluble oat extracts improve glucose and insulin responses of moderately hypercholesterolemic men and women,” American Journal of Clinical Nutrition, vol. 61, no. 2, pp. 379–384, 1995. View at Google Scholar · View at Scopus
  119. A. Cavallero, S. Empilli, F. Brighenti, and A. M. Stanca, “High (1→3,1→4)-β-glucan barley fractions in bread making and their effects on human glycemic response,” Journal of Cereal Science, vol. 36, no. 1, pp. 59–66, 2002. View at Publisher · View at Google Scholar · View at Scopus
  120. A. L. Jenkins, D. J. A. Jenkins, U. Zdravkovic, P. Würsch, and V. Vuksan, “Depression of the glycemic index by high levels of β-glucan fiber in two functional foods tested in type 2 diabetes,” European Journal of Clinical Nutrition, vol. 56, no. 7, pp. 622–628, 2002. View at Publisher · View at Google Scholar · View at Scopus
  121. M. Biörklund, A. van Rees, R. P. Mensink, and G. Önning, “Changes in serum lipids and postprandial glucose and insulin concentrations after consumption of beverages with β-glucans from oats or barley: a randomised dose-controlled trial,” European Journal of Clinical Nutrition, vol. 59, no. 11, pp. 1272–1281, 2005. View at Publisher · View at Google Scholar
  122. Y. Granfeldt, L. Nyberg, and I. Björck, “Muesli with 4 g oat β-glucans lowers glucose and insulin responses after a bread meal in healthy subjects,” European Journal of Clinical Nutrition, vol. 62, no. 5, pp. 600–607, 2008. View at Publisher · View at Google Scholar
  123. J. Hlebowicz, G. Darwiche, O. Björgell, and L. O. Almér, “Effect of muesli with 4 g oat β-glucan on postprandial blood glucose, gastric emptying and satiety in healthy subjects: a randomized crossover trial,” Journal of the American College of Nutrition, vol. 27, no. 4, pp. 470–475, 2008. View at Google Scholar
  124. J. Holm, B. Koellreutter, and P. Wursch, “Influence of sterilization, drying and oat bran enrichment of pasta on glucose and insulin responses in healthy subjects and on the rate and extent of in vitro starch digestion,” European Journal of Clinical Nutrition, vol. 46, no. 9, pp. 629–640, 1992. View at Google Scholar · View at Scopus
  125. I. Björck, H. Liljeberg, and E. Östman, “Low glycaemic-index foods,” British Journal of Nutrition, vol. 83, no. 1, pp. S149–S155, 2000. View at Google Scholar · View at Scopus
  126. R. Chandra and R. A. Liddle, “Cholecystokinin,” Current Opinion in Endocrinology, Diabetes and Obesity, vol. 14, no. 1, pp. 63–67, 2007. View at Publisher · View at Google Scholar · View at Scopus
  127. E. J. Beck, S. M. Tosh, M. J. Batterham, L. C. Tapsell, and X. F. Huang, “Oat β-glucan increases postprandial cholecystokinin levels, decreases insulin response and extends subjective satiety in overweight subjects,” Molecular Nutrition and Food Research, vol. 53, no. 10, pp. 1343–1351, 2009. View at Publisher · View at Google Scholar · View at Scopus
  128. I. Bourdon, W. Yokoyama, P. Davis et al., “Postprandial lipid, glucose, insulin, and cholecystokinin responses in men fed barley pasta enriched with β-glucan,” American Journal of Clinical Nutrition, vol. 69, no. 1, pp. 55–63, 1999. View at Google Scholar · View at Scopus
  129. J. T. Braaten, P. J. Wood, F. W. Scott, K. D. Riedel, L. M. Poste, and M. W. Collins, “Oat gum lowers glucose and insulin after an oral glucose load,” American Journal of Clinical Nutrition, vol. 53, no. 6, pp. 1425–1430, 1991. View at Google Scholar · View at Scopus
  130. L. Marciani, P. A. Gowland, R. C. Spiller et al., “Effect of meal viscosity and nutrients on satiety, intragastric dilution, and emptying assessed by MRI,” American Journal of Physiology, vol. 280, no. 6, pp. G1227–G1233, 2001. View at Google Scholar · View at Scopus
  131. G. Darwiche, O. Björgell, and L. O. Almér, “The addition of locust bean gum but not water delayed the gastric emptying rate of a nutrient semisolid meal in healthy subjects,” BMC Gastroenterology, vol. 3, article 12, 2003. View at Publisher · View at Google Scholar · View at Scopus
  132. C. A. Edwards, I. T. Johnson, and N. W. Read, “Do viscous polysaccharides slow absorption by inhibiting diffusion or convection?” European Journal of Clinical Nutrition, vol. 42, no. 4, pp. 307–312, 1988. View at Google Scholar · View at Scopus
  133. B. O. Schneeman and D. Gallaher, “Effects of dietary fiber on digestive enzyme activity and bile acids in the small intestine,” Proceedings of the Society for Experimental Biology and Medicine, vol. 180, no. 3, pp. 409–414, 1985. View at Google Scholar · View at Scopus
  134. M. A. Eastwood and E. R. Morris, “Physical properties of dietary fiber that influence physiological function: a model for polymers along the gastrointestinal tract,” American Journal of Clinical Nutrition, vol. 55, no. 2, pp. 436–442, 1992. View at Google Scholar · View at Scopus
  135. P. J. Wood, J. Weisz, and B. A. Blackwell, “Structural studies of (1-3)(1-4)-B-D-glucans by 13C-NMR and by rapid analysis of cellulose-like regions using high-performance anion-exchange chromatography of oligosaccharides released by lichenase,” Cereal Chemistry, vol. 71, pp. 301–307, 1994. View at Google Scholar
  136. J. A. Nazare, S. Normand, A. O. Triantafyllou, A. B. De La Perrière, M. Desage, and M. Laville, “Modulation of the postprandial phase by β-glucan in overweight subjects: effects on glucose and insulin kinetics,” Molecular Nutrition and Food Research, vol. 53, no. 3, pp. 361–369, 2009. View at Publisher · View at Google Scholar · View at Scopus
  137. P. Battilana, K. Ornstein, K. Minehira et al., “Mechanisms of action of β-glucan in postprandial glucose metabolism in healthy men,” European Journal of Clinical Nutrition, vol. 55, no. 5, pp. 327–333, 2001. View at Publisher · View at Google Scholar · View at Scopus
  138. J. H. Cummings and H. N. Englyst, “Fermentation in the human large intestine and the available substrates,” American Journal of Clinical Nutrition, vol. 45, no. 5, pp. 1243–1255, 1987. View at Google Scholar · View at Scopus
  139. K. S. Park, T. P. Ciaraldi, K. Lindgren et al., “Troglitazone effects on gene expression in human skeletal muscle of type II diabetes involve up-regulation of peroxisome proliferator-activated receptor-γ,” Journal of Clinical Endocrinology and Metabolism, vol. 83, no. 8, pp. 2830–2835, 1998. View at Publisher · View at Google Scholar · View at Scopus
  140. R. Solà, E. Bruckert, R. M. Valls et al., “Soluble fibre (Plantago ovata husk) reduces plasma low-density lipoprotein (LDL) cholesterol, triglycerides, insulin, oxidised LDL and systolic blood pressure in hypercholesterolaemic patients: a randomised trial,” Atherosclerosis, vol. 211, no. 2, pp. 630–637, 2010. View at Publisher · View at Google Scholar · View at Scopus
  141. S. S. Abumweis, S. Jew, and N. P. Ames, “beta-glucan from barley and its lipid-lowering capacity: a meta-analysis of randomized, controlled trials,” European Journal of Clinical Nutrition, vol. 64, no. 12, pp. 1472–1480, 2010. View at Publisher · View at Google Scholar · View at Scopus
  142. M. Chandalia, A. Garg, D. Lutjohann, K. Von Bergmann, S. M. Grundy, and L. J. Brinkley, “Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus,” The New England Journal of Medicine, vol. 342, no. 19, pp. 1392–1398, 2000. View at Publisher · View at Google Scholar · View at Scopus
  143. R. Solà, G. Godàs, J. Ribalta et al., “Effects of soluble fiber (Plantago ovata husk) on plasma lipids, lipoproteins, and apolipoproteins in men with ischemic heart disease,” American Journal of Clinical Nutrition, vol. 85, no. 4, pp. 1157–1163, 2007. View at Google Scholar · View at Scopus
  144. R. Talati, W. L. Baker, M. S. Pabilonia, C. M. White, and C. I. Coleman, “The effects of Barley-derived soluble fiber on serum lipids,” Annals of Family Medicine, vol. 7, no. 2, pp. 157–163, 2009. View at Publisher · View at Google Scholar · View at Scopus
  145. N. G. Asp, B. Mattsson, and G. Onning, “Variation in dietary fibre, β-glucan, starch, protein, fat and hull content of oats grown in Sweden 1987-1989,” European Journal of Clinical Nutrition, vol. 46, no. 1, pp. 31–37, 1992. View at Google Scholar · View at Scopus
  146. M. Luhaloo, A.-C. Mårtensson, R. Andersson, and P. Åman, “Compositional analysis and viscosity measurements of commercial oat brans,” Journal of the Science of Food and Agriculture, vol. 76, pp. 142–148, 1998. View at Google Scholar
  147. L. A. Drozdowski, R. A. Reimer, F. Temelli, R. C. Bell, T. Vasanthan, and A. B. R. Thomson, “β-Glucan extracts inhibit the in vitro intestinal uptake of long-chain fatty acids and cholesterol and down-regulate genes involved in lipogenesis and lipid transport in rats,” Journal of Nutritional Biochemistry, vol. 21, no. 8, pp. 695–701, 2010. View at Publisher · View at Google Scholar · View at Scopus
  148. B. Delaney, R. J. Nicolosi, T. A. Wilson et al., “β-Glucan fractions from barley and oats are similarly antiatherogenic in hypercholesterolemic Syrian golden hamsters,” Journal of Nutrition, vol. 133, no. 2, pp. 468–475, 2003. View at Google Scholar · View at Scopus
  149. C. Shimizu, M. Kihara, S. Aoe et al., “Effect of high β-glucan barley on serum cholesterol concentrations and visceral fat area in Japanese men—a randomized, double-blinded, placebo-controlled trial,” Plant Foods for Human Nutrition, vol. 63, no. 1, pp. 21–25, 2008. View at Publisher · View at Google Scholar · View at Scopus
  150. K. M. Behall, D. J. Scholfield, and J. Hallfrisch, “Lipids significantly reduced by diets containing Barley in moderately hypercholesterolemic men,” Journal of the American College of Nutrition, vol. 23, no. 1, pp. 55–62, 2004. View at Google Scholar · View at Scopus
  151. K. M. Behall, D. J. Scholfield, and J. Hallfrisch, “Diets containing barley significantly reduce lipids in mildly hypercholesterolemic men and women,” American Journal of Clinical Nutrition, vol. 80, no. 5, pp. 1185–1193, 2004. View at Google Scholar · View at Scopus
  152. G. F. Keogh, G. J. S. Cooper, T. B. Mulvey et al., “Randomized controlled crossover study of the effect of a highly β-glucan-enriched barley on cardiovascular disease risk factors in mildly hypercholesterolemic men,” American Journal of Clinical Nutrition, vol. 78, no. 4, pp. 711–718, 2003. View at Google Scholar · View at Scopus
  153. Health Canada: Oat Products adn Blood Cholesterol Lowering, Summary of Assessment of a Health Claim about Oat Products and Blood Cholesterol Lowering, http://www.hc-sc.gc.ca/fn-an/alt_formats/pdf/label-etiquet/claims-reclam/assess-evalu/oat_avoine-eng.pdf.
  154. M. H. Davidson, L. D. Dugan, J. H. Burns, J. Bova, K. Story, and K. B. Drennan, “The hypocholesterolemic effects of β-glucan in oatmeal and oat bran. A dose-controlled study,” Journal of the American Medical Association, vol. 265, no. 14, pp. 1833–1839, 1991. View at Publisher · View at Google Scholar · View at Scopus
  155. N. Reyna-Villasmil, V. Bermúdez-Pirela, E. Mengual-Moreno et al., “Oat-derived β-glucan significantly improves HDLC and diminishes LDLC and non-HDL cholesterol in overweight individuals with mild hypercholesterolemia,” American Journal of Therapeutics, vol. 14, no. 2, pp. 203–212, 2007. View at Publisher · View at Google Scholar · View at Scopus
  156. K. M. Queenan, M. L. Stewart, K. N. Smith, W. Thomas, R. G. Fulcher, and J. L. Slavin, “Concentrated oat β-glucan, a fermentable fiber, lowers serum cholesterol in hypercholesterolemic adults in a randomized controlled trial,” Nutrition Journal, vol. 6, article 6, 2007. View at Publisher · View at Google Scholar · View at Scopus
  157. M. Biörklund and J. Holm, “Serum lipids and postprandial glucose and insulin levels in hyperlipidemic subjects after consumption of an oat β-glucan-containing ready meal,” Annals of Nutrition and Metabolism, vol. 52, no. 2, pp. 83–90, 2008. View at Publisher · View at Google Scholar
  158. R. Torronen, L. Kansanen, M. Uusitupa et al., “Effects of an oat bran concentrate on serum lipids in free-living men with mild to moderate hypercholesterolaemia,” European Journal of Clinical Nutrition, vol. 46, no. 9, pp. 621–627, 1992. View at Google Scholar · View at Scopus
  159. J. L. Whyte, R. McArthur, D. Topping, and P. Nestel, “Oat bran lowers plasma cholesterol levels in mildly hypercholesterolemic men,” Journal of the American Dietetic Association, vol. 92, no. 4, pp. 446–449, 1992. View at Google Scholar · View at Scopus
  160. N. Poulter, Choon Lan Chang, A. Cuff, C. Poulter, P. Sever, and S. Thom, “Lipid profiles after the daily consumption of an oat-based cereal: a controlled crossover trial,” American Journal of Clinical Nutrition, vol. 59, no. 1, pp. 66–69, 1994. View at Google Scholar · View at Scopus
  161. J. A. Lovegrove, A. Clohessy, H. Milon, and C. M. Williams, “Modest doses of β-glucan do not reduce concentrations of potentially atherogenic lipoproteins,” American Journal of Clinical Nutrition, vol. 72, no. 1, pp. 49–55, 2000. View at Google Scholar · View at Scopus
  162. D. A. J. M. Kerckhoffs, G. Hornstra, and R. P. Mensink, “Cholesterol-lowering effect of β-glucan from oat bran in mildly hypercholesterolemic subjects may decrease when β-glucan is incorporated into bread and cookies,” American Journal of Clinical Nutrition, vol. 78, no. 2, pp. 221–227, 2003. View at Google Scholar · View at Scopus
  163. S. Pomeroy, R. Tupper, M. Cehun-Aders, and P. Nestel, “Oat beta-glucan lowers total and LDL-cholesterol,” Australian Journal of Nutrition and Dietetics, vol. 58, pp. 51–55, 2001. View at Google Scholar
  164. A. P. de Groot, R. Luyken, and N. A. Pikaar, “Cholesterol-lowering effect of rolled oats,” The Lancet, vol. 282, no. 7302, pp. 303–304, 1963. View at Google Scholar · View at Scopus
  165. M. Kestin, R. Moss, P. M. Clifton, and P. J. Nestel, “Comparative effects of three cereal brans on plasma lipids, blood pressure, and glucose metabolism in mildly hypercholesterolemic men,” American Journal of Clinical Nutrition, vol. 52, no. 4, pp. 661–666, 1990. View at Google Scholar · View at Scopus
  166. J. Leadbetter, M. J. Ball, and J. I. Mann, “Effects of increasing quantities of oat bran in hypercholesterolemic people,” American Journal of Clinical Nutrition, vol. 54, no. 5, pp. 841–845, 1991. View at Google Scholar · View at Scopus
  167. J. M. Bremer, R. S. Scott, and C. J. Lintott, “Oat bran and cholesterol reduction: evidence against specific effect,” Australian and New Zealand Journal of Medicine, vol. 21, no. 4, pp. 422–426, 1991. View at Google Scholar · View at Scopus
  168. I. Trogh, C. M. Courtin, A. A. M. Andersson, P. Åman, J. F. Sørensen, and J. A. Delcour, “The combined use of hull-less barley flour and xylanase as a strategy for wheat/hull-less barley flour breads with increased arabinoxylan and (1→3,1→4)-β-D-glucan levels,” Journal of Cereal Science, vol. 40, no. 3, pp. 257–267, 2004. View at Publisher · View at Google Scholar · View at Scopus
  169. Z. Burkus and F. Temelli, “Effect of extraction conditions on yield, composition, and viscosity stability of barley β-glucan gum,” Cereal Chemistry, vol. 75, no. 6, pp. 805–809, 1998. View at Google Scholar · View at Scopus
  170. P. J. Wood, J. Weisz, and W. Mahn, “Molecular characterization of cereal β-glucans. II. Size-exclusion chromatography for comparison of molecular weight,” Cereal Chemistry, vol. 68, pp. 530–536, 1991. View at Google Scholar
  171. M. U. Beer, P. J. Wood, and J. Weisz, “Molecular weight distribution and (1→3)(1→4)-β-D-glucan content of consecutive extracts of various oat and barley cultivars,” Cereal Chemistry, vol. 74, no. 4, pp. 476–480, 1997. View at Google Scholar · View at Scopus
  172. P. Åman, L. Rimsten, and R. Andersson, “Molecular weight distribution of β-glucan in oat-based foods,” Cereal Chemistry, vol. 81, no. 3, pp. 356–360, 2004. View at Google Scholar · View at Scopus
  173. A. M. Lambo, R. Öste, and M. E. G. L. Nyman, “Dietary fibre in fermented oat and barley β-glucan rich concentrates,” Food Chemistry, vol. 89, no. 2, pp. 283–293, 2005. View at Publisher · View at Google Scholar · View at Scopus
  174. E. Theuwissen and R. P. Mensink, “Water-soluble dietary fibers and cardiovascular disease,” Physiology and Behavior, vol. 94, no. 2, pp. 285–292, 2008. View at Publisher · View at Google Scholar · View at Scopus
  175. V. Goel, S. K. Cheema, L. B. Agellon, B. Ooraikul, and T. K. Basu, “Dietary rhubarb (Rheum rhaponticum) stalk fibre stimulates cholesterol 7α-hydroxylase gene expression and bile acid excretion in cholesterol-fed C57BL/6J mice,” British Journal of Nutrition, vol. 81, no. 1, pp. 65–71, 1999. View at Google Scholar · View at Scopus
  176. J. X. Zhang, G. Hallmans, H. Andersson et al., “Effect of oat bran on plasma cholesterol and bile acid excretion in nine subjects with ileostomies,” American Journal of Clinical Nutrition, vol. 56, no. 1, pp. 99–105, 1992. View at Google Scholar · View at Scopus
  177. G. Dongowski, M. Huth, and E. Gebhardt, “Steroids in the intestinal tract of rats are affected by dietary-fibre-rich barley-based diets,” British Journal of Nutrition, vol. 90, no. 5, pp. 895–906, 2003. View at Publisher · View at Google Scholar · View at Scopus
  178. Y. Mälkki, K. Autio, and O. Hanninen, “Oat bran concentrates: physical properties of β-glucan and hypocholesterolemic effects in rats,” Cereal Chemistry, vol. 69, pp. 647–653, 1992. View at Google Scholar
  179. A. Lia, G. Hallmans, A. S. Sandberg, B. Sundberg, P. Aman, and H. Andersson, “Oat β-glucan increases bile acid excretion and a fiber-rich barley fraction increases cholesterol excretion in ileostomy subjects,” American Journal of Clinical Nutrition, vol. 62, no. 6, pp. 1245–1251, 1995. View at Google Scholar · View at Scopus
  180. J. A. Marlett, K. B. Hosig, N. W. Vollendorf, F. L. Shinnick, V. S. Haack, and J. A. Story, “Mechanism of serum cholesterol reduction by oat bran,” Hepatology, vol. 20, no. 6, pp. 1450–1457, 1994. View at Publisher · View at Google Scholar · View at Scopus
  181. L. C. Hillman, S. G. Peters, C. A. Fisher, and E. W. Pomare, “Effects of the fibre components pectin, cellulose, and lignin on bile salt metabolism and biliary lipid composition in man,” Gut, vol. 27, no. 1, pp. 29–36, 1986. View at Google Scholar · View at Scopus
  182. Y. Lin, R. J. Vonk, J. H. Slooff, F. Kuipers, and M. J. Smit, “Differences in propionate-induced inhibition of cholesterol and triacylglycerol synthesis between human and rat hepatocytes in primary culture,” British Journal of Nutrition, vol. 74, no. 2, pp. 197–207, 1995. View at Publisher · View at Google Scholar · View at Scopus
  183. T. M. S. Wolever, J. Fernandes, and A. V. Rao, “Serum acetate:propionate ratio is related to serum cholesterol in men but not women,” Journal of Nutrition, vol. 126, no. 11, pp. 2790–2797, 1996. View at Google Scholar · View at Scopus
  184. T. M. S. Wolever, P. Spadafora, and H. Eshuis, “Interaction between colonic acetate and propionate in humans,” American Journal of Clinical Nutrition, vol. 53, no. 3, pp. 681–687, 1991. View at Google Scholar · View at Scopus
  185. T. M. S. Wolever, P. J. Spadafora, S. C. Cunnane, and P. B. Pencharz, “Propionate inhibits incorporation of colonic [1,2-13C]acetate into plasma lipids in humans,” American Journal of Clinical Nutrition, vol. 61, no. 6, pp. 1241–1247, 1995. View at Google Scholar · View at Scopus
  186. R. S. Wright, J. W. Anderson, and S. R. Bridges, “Propionate inhibits hepatocyte lipid synthesis,” Proceedings of the Society for Experimental Biology and Medicine, vol. 195, no. 1, pp. 26–29, 1990. View at Google Scholar · View at Scopus
  187. S. R. Bridges, J. W. Anderson, D. A. Deakins, D. W. Dillon, and C. L. Wood, “Oat bran increases serum acetate of hypercholesterolemic men,” American Journal of Clinical Nutrition, vol. 56, no. 2, pp. 455–459, 1992. View at Google Scholar · View at Scopus
  188. K. Ebihara and B. O. Schneeman, “Interaction of bile acids, phospholipids, cholesterol and triglyceride with dietary fibers in the small intestine of rats,” Journal of Nutrition, vol. 119, no. 8, pp. 1100–1106, 1989. View at Google Scholar · View at Scopus
  189. H. Liljeberg and I. Björck, “Effects of a low-glycaemic index spaghetti meal on glucose tolerance and lipaemia at a subsequent meal in healthy subjects,” European Journal of Clinical Nutrition, vol. 54, no. 1, pp. 24–28, 2000. View at Publisher · View at Google Scholar · View at Scopus
  190. E. J. Parks, “Dietary carbohydrate's effects on lipogenesis and the relationship of lipogenesis to blood insulin and glucose concentrations,” British Journal of Nutrition, vol. 87, no. 2, pp. S247–S253, 2002. View at Google Scholar · View at Scopus
  191. N. Kok, M. Roberfroid, and N. Delzenne, “Dietary oligofructose modifies the impact of fructose on hepatic triacylglycerol metabolism,” Metabolism, vol. 45, no. 12, pp. 1547–1550, 1996. View at Publisher · View at Google Scholar · View at Scopus
  192. B. Y. N. Kok, M. Roberfroid, A. Robert, and N. Delzenne, “Involvement of lipogenesis in the lower VLDL secretion induced by oligofructose in rats,” British Journal of Nutrition, vol. 76, no. 6, pp. 881–890, 1996. View at Publisher · View at Google Scholar · View at Scopus
  193. A. V. Chobanian, G. L. Bakris, H. R. Black et al., “The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report,” Journal of the American Medical Association, vol. 289, no. 19, pp. 2560–2572, 2003. View at Publisher · View at Google Scholar · View at Scopus
  194. S. P. Whelton, A. D. Hyre, B. Pedersen, Y. Yi, P. K. Whelton, and J. He, “Effect of dietary fiber intake on blood pressure: a meta-analysis of randomized, controlled clinical trials,” Journal of Hypertension, vol. 23, no. 3, pp. 475–481, 2005. View at Google Scholar · View at Scopus
  195. D. J. A. Jenkins, C. W. C. Kendall, V. Vuksan et al., “Soluble fiber intake at a dose approved by the US Food and Drug Administration for a claim of health benefits: serum lipid risk factors for cardiovascular disease assessed in a randomized controlled crossover trial,” American Journal of Clinical Nutrition, vol. 75, no. 5, pp. 834–839, 2002. View at Google Scholar · View at Scopus
  196. J. M. Keenan, J. J. Pins, C. Frazel, A. Moran, and L. Turnquist, “Oat ingestion reduces systolic and diastolic blood pressure in patients with mild or borderline hypertension: a pilot trial,” The Journal of Family Practice, vol. 51, no. 4, p. 369, 2002. View at Google Scholar · View at Scopus
  197. J. He, R. H. Streiffer, P. Muntner, M. A. Krousel-Wood, and P. K. Whelton, “Effect of dietary fiber intake on blood pressure: a randomized, double-blind, placebo-controlled trial,” Journal of Hypertension, vol. 22, no. 1, pp. 73–80, 2004. View at Publisher · View at Google Scholar · View at Scopus
  198. E. Ferrannini, G. Buzzigoli, and R. Bonadonna, “Insulin resistance in essential hypertension,” The New England Journal of Medicine, vol. 317, no. 6, pp. 350–357, 1987. View at Google Scholar · View at Scopus
  199. C. Ferri, C. Bellini, G. Desideri et al., “Relationship between insulin resistance and nonmodulating hypertension: linkage of metabolic abnormalities and cardiovascular risk,” Diabetes, vol. 48, no. 8, pp. 1623–1630, 1999. View at Publisher · View at Google Scholar · View at Scopus
  200. T. J. Anderson, I. T. Meredith, A. C. Yeung, B. Frei, A. P. Selwyn, and P. Ganz, “The effect of cholesterol-lowering and antioxidant therapy on endothelium-dependent coronary vasomotion,” The New England Journal of Medicine, vol. 332, no. 8, pp. 488–493, 1995. View at Publisher · View at Google Scholar · View at Scopus
  201. R. A. Vogel, M. C. Corretti, and G. D. Plotnick, “Changes in flow-mediated brachial artery vasoactivity with lowering of desirable cholesterol levels in healthy middle-aged men,” American Journal of Cardiology, vol. 77, no. 1, pp. 37–40, 1996. View at Publisher · View at Google Scholar · View at Scopus
  202. M. S. Crago, S. D. West, K. D. Hoeprich, K. J. Michaelis, and J. E. McKenzie, “Effects of hyperlipidemia on blood pressure and coronary blood flow in swine,” The FASEB Journal, vol. 12, no. 4, p. A238, 1998. View at Google Scholar · View at Scopus
  203. J. E. Neter, B. E. Stam, F. J. Kok, D. E. Grobbee, and J. M. Geleijnse, “Influence of weight reduction on blood pressure: a meta-analysis of randomized controlled trials,” Hypertension, vol. 42, no. 5, pp. 878–884, 2003. View at Publisher · View at Google Scholar · View at Scopus
  204. N. C. Howarth, E. Saltzman, and S. B. Roberts, “Dietary fiber and weight regulation,” Nutrition Reviews, vol. 59, no. 5, pp. 129–139, 2001. View at Google Scholar · View at Scopus
  205. D. Rigaud, K. R. Ryttig, L. A. Angel, and M. Apfelbaum, “Overweight treated with energy restriction and a dietary fibre supplement: a 6-month randomized, double-blind, placebo-controlled trial,” International Journal of Obesity, vol. 14, no. 9, pp. 763–769, 1990. View at Google Scholar · View at Scopus
  206. G. S. Birketvedt, J. Aaseth, J. R. Florholmen, and K. Ryttig, “Long-term effect of fibre supplement and reduced energy intake on body weight and blood lipids in overweight subjects,” Acta Medica, vol. 43, no. 4, pp. 129–132, 2000. View at Google Scholar · View at Scopus
  207. M. H. Pittler and E. Ernst, “Guar gum for body weight reduction: meta-analysis of randomized trials,” American Journal of Medicine, vol. 110, no. 9, pp. 724–730, 2001. View at Publisher · View at Google Scholar · View at Scopus
  208. W. M. Mueller-Cunningham, R. Quintana, and S. E. Kasim-Karakas, “An ad libitum, very low-fat diet results in weight loss and changes in nutrient intakes in postmenopausal women,” Journal of the American Dietetic Association, vol. 103, no. 12, pp. 1600–1606, 2003. View at Publisher · View at Google Scholar · View at Scopus
  209. N. P. Hays, R. D. Starling, X. Liu et al., “Effects of an Ad libitum low-fat, high-carbohydrate diet on body weight, body composition, and fat distribution in older men and women: a randomized controlled trial,” Archives of Internal Medicine, vol. 164, no. 2, pp. 210–217, 2004. View at Publisher · View at Google Scholar · View at Scopus
  210. G. S. Birketvedt, M. Shimshi, E. Thom, and J. Florholmen, “Experiences with three different fiber supplements in weight reduction,” Medical Science Monitor, vol. 11, no. 1, pp. PI5–PI8, 2005. View at Google Scholar · View at Scopus
  211. C. L. Dikeman and G. C. Fahey, “Viscosity as related to dietary fiber: a review,” Critical Reviews in Food Science and Nutrition, vol. 46, no. 8, pp. 649–663, 2006. View at Publisher · View at Google Scholar · View at Scopus
  212. E. M. R. Kovacs, M. S. Westerterp-Plantenga, W. H. M. Saris, I. Goossens, P. Geurten, and F. Brouns, “The effect of addition of modified guar gum to a low-energy semisolid meal on appetite and body weight loss,” International Journal of Obesity, vol. 25, no. 3, pp. 307–315, 2001. View at Publisher · View at Google Scholar
  213. A. Raben, K. Andersen, M. A. Karberg, J. J. Holst, and A. Astrup, “Acetylation of or β-cyclodextrin addition to potato starch: beneficial effect on glucose metabolism and appetite sensations,” American Journal of Clinical Nutrition, vol. 66, no. 2, pp. 304–314, 1997. View at Google Scholar · View at Scopus
  214. J. D. Buckley, A. A. Thorp, K. J. Murphy, and P. R. C. Howe, “Dose-dependent inhibition of the post-prandial glycaemic response to a standard carbohydrate meal following incorporation of alpha-cyclodextrin,” Annals of Nutrition and Metabolism, vol. 50, no. 2, pp. 108–114, 2006. View at Publisher · View at Google Scholar · View at Scopus
  215. W. Pasman, D. Wils, M. H. Saniez, and A. Kardinaal, “Long-term gastrointestinal tolerance of NUTRIOSE FB in healthy men,” European Journal of Clinical Nutrition, vol. 60, no. 8, pp. 1024–1034, 2006. View at Publisher · View at Google Scholar · View at Scopus
  216. J. Chow, Y. S. Choe, M. J. Noss et al., “Effect of a viscous fiber-containing nutrition bar on satiety of patients with type 2 diabetes,” Diabetes Research and Clinical Practice, vol. 76, no. 3, pp. 335–340, 2007. View at Publisher · View at Google Scholar · View at Scopus
  217. N. Schroeder, D. D. Gallaher, E. A. Arndt, and L. Marquart, “Influence of whole grain barley, whole grain wheat, and refined rice-based foods on short-term satiety and energy intake,” Appetite, vol. 53, no. 3, pp. 363–369, 2009. View at Publisher · View at Google Scholar · View at Scopus
  218. Y. Granfeldt, H. Liljeberg, A. Drews, R. Newman, and I. Bjorck, “Glucose and insulin responses to barley products: influence of food structure and amylose-amylopectin ratio,” American Journal of Clinical Nutrition, vol. 59, no. 5, pp. 1075–1082, 1994. View at Google Scholar · View at Scopus
  219. H. G. M. Liljeberg, A. K. E. Åkerberg, and I. M. E. Björck, “Effect of the glycemic index and content of indigestible carbohydrates of cereal-based breakfast meals on glucose tolerance at lunch in healthy subjects,” American Journal of Clinical Nutrition, vol. 69, no. 4, pp. 647–655, 1999. View at Google Scholar · View at Scopus
  220. R. J. Kaplan and C. E. Greenwood, “Influence of dietary carbohydrates and glycaemic response on subjective appetite and food intake in healthy elderly persons,” International Journal of Food Sciences and Nutrition, vol. 53, no. 4, pp. 305–316, 2002. View at Publisher · View at Google Scholar · View at Scopus
  221. E. Rytter, C. Erlanson-Albertsson, L. Lindahl et al., “Changes in plasma insulin, enterostatin, and lipoprotein levels during an energy-restricted dietary regimen including a new oat-based liquid food,” Annals of Nutrition and Metabolism, vol. 40, no. 4, pp. 212–220, 1996. View at Google Scholar · View at Scopus
  222. M. Lyly, K. H. Liukkonen, M. Salmenkallio-Marttila, L. Karhunen, K. Poutanen, and L. Lähteenmäki, “Fibre in beverages can enhance perceived satiety,” European Journal of Nutrition, vol. 48, no. 4, pp. 251–258, 2009. View at Publisher · View at Google Scholar · View at Scopus
  223. P. Vitaglione, R. B. Lumaga, A. Stanzione, L. Scalfi, and V. Fogliano, “β-Glucan-enriched bread reduces energy intake and modifies plasma ghrelin and peptide YY concentrations in the short term,” Appetite, vol. 53, no. 3, pp. 338–344, 2009. View at Publisher · View at Google Scholar · View at Scopus
  224. E. Saltzman, J. C. Moriguti, S. K. Das et al., “Effects of a cereal rich in soluble fiber on body composition and dietary compliance during consumption of a hypocaloric diet,” Journal of the American College of Nutrition, vol. 20, no. 1, pp. 50–57, 2001. View at Google Scholar · View at Scopus
  225. H. Kim, K. M. Behall, B. Vinyard, and J. M. Conway, “Short-term satiety and glycemic response after consumption of whole grains with various amounts of β-glucan,” Cereal Foods World, vol. 51, no. 1, pp. 29–33, 2006. View at Publisher · View at Google Scholar · View at Scopus
  226. H. P. F. Peters, H. M. Boers, E. Haddeman, S. M. Melnikov, and F. Qvyjt, “No effect of added β-glucan or of fructooligosaccharide on appetite or energy intake,” American Journal of Clinical Nutrition, vol. 89, no. 1, pp. 58–63, 2009. View at Publisher · View at Google Scholar · View at Scopus
  227. M. Lyly, N. Ohls, L. Lähteenmäki et al., “The effect of fibre amount, energy level and viscosity of beverages containing oat fibre supplement on perceived satiety,” Food and Nutrition Research, vol. 54, no. 1, pp. 1–8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  228. P. Vitaglione, R. B. Lumaga, C. Montagnese, M. C. Messia, E. Marconi, and L. Scalfi, “Satiating effect of a barley beta-glucan-enriched snack,” Journal of the American College of Nutrition, vol. 29, no. 2, pp. 113–121, 2010. View at Google Scholar · View at Scopus
  229. Z. Burkus and F. Temelli, “Determination of the molecular weight of barley β-glucan using intrinsic viscosity measurements,” Carbohydrate Polymers, vol. 54, no. 1, pp. 51–57, 2003. View at Publisher · View at Google Scholar · View at Scopus
  230. A. Lazaridou, C. G. Biliaderis, and M. S. Izydorczyk, “Cereal beta-glucans: structures, physical properties, and physiological functions,” in Function Food Carbohydrates, CRC Press, Boca Raton, Fla, USA, 2007. View at Google Scholar
  231. M. U. Beer, P. J. Wood, J. Weisz, and N. Fillion, “Effect of cooking and storage on the amount and molecular weight of (1→3)(1→4)-β-D-glucan extracted from oat products by an in vitro digestion system,” Cereal Chemistry, vol. 74, no. 6, pp. 705–709, 1997. View at Google Scholar · View at Scopus
  232. S. V. Kirkmeyer and R. D. Mattes, “Effects of food attributes on hunger and food intake,” International Journal of Obesity, vol. 24, no. 9, pp. 1167–1175, 2000. View at Google Scholar
  233. M. E. Pick, Z. J. Hawrysh, M. I. Gee, E. Toth, M. L. Garg, and R. T. Hardin, “Oat bran concentrate bread products improve long-term control of diabetes: a pilot study,” Journal of the American Dietetic Association, vol. 96, no. 12, pp. 1254–1261, 1996. View at Publisher · View at Google Scholar · View at Scopus
  234. E. J. Beck, L. C. Tapsell, M. J. Batterham, S. M. Tosh, and X. F. Huang, “Oat β-glucan supplementation does not enhance the effectiveness of an energy-restricted diet in overweight women,” British Journal of Nutrition, vol. 103, no. 8, pp. 1212–1222, 2010. View at Publisher · View at Google Scholar · View at Scopus
  235. B. Burton-Freeman, “Dietary fiber and energy regulation,” Journal of Nutrition, vol. 130, no. 2, supplement, pp. 272S–275S, 2000. View at Google Scholar
  236. R. D. Mattes and D. Rothacker, “Beverage viscosity is inversely related to postprandial hunger in humans,” Physiology and Behavior, vol. 74, no. 4-5, pp. 551–557, 2001. View at Publisher · View at Google Scholar · View at Scopus
  237. N. Zijlstra, M. Mars, R. A. De Wijk, M. S. Westerterp-Plantenga, and C. De Graaf, “The effect of viscosity on ad libitum food intake,” International Journal of Obesity, vol. 32, no. 4, pp. 676–683, 2008. View at Publisher · View at Google Scholar · View at Scopus
  238. D. Rigaud, F. Paycha, A. Meulemans, M. Merrouche, and M. Mignon, “Effect of psyllium on gastric emptying, hunger feeling and food intake in normal volunteers: a double blind study,” European Journal of Clinical Nutrition, vol. 52, no. 4, pp. 239–245, 1998. View at Google Scholar · View at Scopus
  239. G. Isaksson, I. Lundquist, and I. Ihse, “Effect of dietary fiber on pancreatic enyzme in vitro,” Gastroenterology, vol. 82, no. 5, pp. 918–924, 1982. View at Google Scholar
  240. K. R. Juvonen, A. K. Purhonen, M. Salmenkallio-Marttila et al., “Viscosity of oat bran-enriched beverages influences gastrointestinal hormonal responses in healthy humans,” Journal of Nutrition, vol. 139, no. 3, pp. 461–466, 2009. View at Publisher · View at Google Scholar · View at Scopus
  241. P. R. Ellis, F. M. Dawoud, and E. R. Morris, “Blood glucose, plasma insulin and sensory responses to guar-containing wheat breads: effects of molecular weight and particle size of guar gum,” British Journal of Nutrition, vol. 66, no. 3, pp. 363–379, 1991. View at Google Scholar · View at Scopus
  242. C. De Graaf, L. S. De Jong, and A. C. Lambers, “Palatability affects satiation but not satiety,” Physiology and Behavior, vol. 66, no. 4, pp. 681–688, 1999. View at Publisher · View at Google Scholar · View at Scopus
  243. C. Berg, I. Jonsson, M. Conner, and L. Lissner, “Perceptions and reasons for choice of fat-and fibre-containing foods by Swedish schoolchildren,” Appetite, vol. 40, no. 1, pp. 61–67, 2003. View at Publisher · View at Google Scholar · View at Scopus
  244. S. H. A. Holt, J. C. Brand Miller, P. Petocz, and E. Farmakalidis, “A satiety index of common foods,” European Journal of Clinical Nutrition, vol. 49, no. 9, pp. 675–690, 1995. View at Google Scholar · View at Scopus
  245. O. Mårtensson, M. Biörklund, A. M. Lambo et al., “Fermented, ropy, oat-based products reduce cholesterol levels and stimulate the bifidobacteria flora in humans,” Nutrition Research, vol. 25, no. 5, pp. 429–442, 2005. View at Publisher · View at Google Scholar · View at Scopus
  246. S. Holt, J. Brand, C. Soveny, and J. Hansky, “Relationship of satiety to postprandial glycaemic, insulin and cholecystokinin responses,” Appetite, vol. 18, no. 2, pp. 129–141, 1992. View at Publisher · View at Google Scholar · View at Scopus
  247. S. H. A. Holt and J. B. Miller, “Increased insulin responses to ingested foods are associated with lessened satiety,” Appetite, vol. 24, no. 1, pp. 43–54, 1995. View at Publisher · View at Google Scholar · View at Scopus
  248. G. H. Anderson, N. L. A. Catherine, D. M. Woodend, and T. M. S. Wolever, “Inverse association between the effect of carbohydrates on blood glucose and subsequent short-term food intake in young men,” American Journal of Clinical Nutrition, vol. 76, no. 5, pp. 1023–1030, 2002. View at Google Scholar · View at Scopus
  249. S. L. Stewart, R. M. Black, T. M. S. Wolever, and G. H. Anderson, “The relationship between the glycaemic response to breakfast cereals and subjective appetite and food intake,” Nutrition Research, vol. 17, no. 8, pp. 1249–1260, 1997. View at Publisher · View at Google Scholar · View at Scopus
  250. G. H. Anderson and D. Woodend, “Effect of glycemic carbohydrates on short-term satiety and food intake,” Nutrition Reviews, vol. 61, no. 5, pp. S17–S26, 2003. View at Google Scholar · View at Scopus
  251. J. H. Cummings, E. W. Pomare, W. J. Branch, C. P. E. Naylor, and G. T. Macfarlane, “Short chain fatty acids in human large intestine, portal, hepatic and venous blood,” Gut, vol. 28, no. 10, pp. 1221–1227, 1987. View at Google Scholar · View at Scopus
  252. W. E. W. Roediger, “Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man,” Gut, vol. 21, no. 9, pp. 793–798, 1980. View at Google Scholar · View at Scopus
  253. Y. H. Hong, Y. Nishimura, D. Hishikawa et al., “Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43,” Endocrinology, vol. 146, no. 12, pp. 5092–5099, 2005. View at Publisher · View at Google Scholar · View at Scopus
  254. M. L. Sleeth, E. L. Thompson, H. E. Ford, S. E. K. Zac-Varghese, and G. Frost, “Free fatty acid receptor 2 and nutrient sensing: a proposed role for fibre, fermentable carbohydrates and short-chain fatty acids in appetite regulation,” Nutrition Research Reviews, vol. 23, no. 1, pp. 135–145, 2010. View at Publisher · View at Google Scholar · View at Scopus
  255. H. M. Hamer, D. Jonkers, K. Venema, S. Vanhoutvin, F. J. Troost, and R. J. Brummer, “Review article: the role of butyrate on colonic function,” Alimentary Pharmacology and Therapeutics, vol. 27, no. 2, pp. 104–119, 2008. View at Publisher · View at Google Scholar · View at Scopus
  256. P. E. Kendall and L. M. McLeay, “Excitatory effects of volatile fatty acids on the in vitro motility of the rumen of sheep,” Research in Veterinary Science, vol. 61, no. 1, pp. 1–6, 1996. View at Google Scholar · View at Scopus
  257. E. N. Bergman, “Energy contributions of volatile fatty acids from the gastrointestinal tract in various species,” Physiological Reviews, vol. 70, no. 2, pp. 567–590, 1990. View at Google Scholar · View at Scopus
  258. N. B. Dass, A. K. John, A. K. Bassil et al., “The relationship between the effects of short-chain fatty acids on intestinal motility in vitro and GPR43 receptor activation,” Neurogastroenterology and Motility, vol. 19, no. 1, pp. 66–74, 2007. View at Publisher · View at Google Scholar · View at Scopus
  259. H. Tazoe, Y. Otomo, I. Kaji, R. Tanaka, S. I. Karaki, and A. Kuwahara, “Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions,” Journal of Physiology and Pharmacology, vol. 59, no. 2, pp. 251–262, 2008. View at Google Scholar · View at Scopus
  260. C. Cherbut, “Effects of short-chain fatty acids on gastrointestinal motility,” in Physiological and Clinical Aspects of Short-Chain Fatty Acids, J. H. Cummings, J. L. Rombeau, and T. Sakata, Eds., Cambridge University Press, Cambridge, UK, 1995. View at Google Scholar
  261. M. Berger, J. A. Gray, and B. L. Roth, “The expanded biology of serotonin,” Annual Review of Medicine, vol. 60, pp. 355–366, 2009. View at Publisher · View at Google Scholar · View at Scopus
  262. D. Y. Kim and M. Camilleri, “Serotonin: a mediator of the brain-gut connection,” American Journal of Gastroenterology, vol. 95, no. 10, pp. 2704–2709, 2000. View at Google Scholar · View at Scopus
  263. J. X. Zhu, X. Y. Wu, C. Owyang, and Y. Li, “Intestinal serotonin acts as a paracrine substance to mediate vagal signal transmission evoked by luminal factors in the rat,” Journal of Physiology, vol. 530, no. 3, pp. 431–442, 2001. View at Publisher · View at Google Scholar · View at Scopus
  264. S. Fukumoto, M. Tatewaki, T. Yamada et al., “Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats,” American Journal of Physiology, vol. 284, no. 5, pp. R1269–R1276, 2003. View at Google Scholar · View at Scopus
  265. V. Dumoulin, F. Moro, A. Barcelo, T. Dakka, and J. C. Cuber, “Peptide YY, glucagon-like peptide-1, and neurotensin responses to luminal factors in the isolated vascularly perfused rat ileum,” Endocrinology, vol. 139, no. 9, pp. 3780–3786, 1998. View at Publisher · View at Google Scholar · View at Scopus
  266. K. Tatemoto and V. Mutt, “Isolation of two novel candidate hormones using a chemical method for finding naturally occurring polypeptides,” Nature, vol. 285, no. 5764, pp. 417–418, 1980. View at Google Scholar · View at Scopus
  267. G. A. Eberlein, V. E. Eysselein, M. Schaeffer et al., “A new molecular form of PYY: structural characterization of human PYY(3-36) and PYY(1-36),” Peptides, vol. 10, no. 4, pp. 797–803, 1989. View at Google Scholar · View at Scopus
  268. T. E. Adrian, G. L. Ferri, and A. J. Bacarese-Hamilton, “Human distribution and release of a putative new gut hormone, peptide YY,” Gastroenterology, vol. 89, no. 5, pp. 1070–1077, 1985. View at Google Scholar · View at Scopus
  269. R. L. Batterham, M. A. Cowley, C. J. Small et al., “Gut hormone PYY3-36 physiologically inhibits food intake,” Nature, vol. 418, no. 6898, pp. 650–654, 2002. View at Publisher · View at Google Scholar · View at Scopus
  270. R. L. Batterham, M. A. Cohen, S. M. Ellis et al., “Inhibition of food intake in obese subjects by peptide YY3-36,” The New England Journal of Medicine, vol. 349, no. 10, pp. 941–948, 2003. View at Publisher · View at Google Scholar · View at Scopus
  271. L. J. Karhunen, K. R. Juvonen, S. M. Flander et al., “A psyllium fiber-enriched meal strongly attenuates postprandial gastrointestinal peptide release in healthy young adults,” Journal of Nutrition, vol. 140, no. 4, pp. 737–744, 2010. View at Publisher · View at Google Scholar · View at Scopus
  272. R. A. Reimer, X. Pelletier, I. G. Carabin et al., “Increased plasma PYY levels following supplementation with the functional fiber PolyGlycopleX in healthy adults,” European Journal of Clinical Nutrition, vol. 64, no. 10, pp. 1186–1191, 2010. View at Publisher · View at Google Scholar · View at Scopus
  273. J. A. Parnell and R. A. Reimer, “Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults,” American Journal of Clinical Nutrition, vol. 89, no. 6, pp. 1751–1759, 2009. View at Publisher · View at Google Scholar · View at Scopus
  274. E. J. Beck, L. C. Tapsell, M. J. Batterham, S. M. Tosh, and X. F. Huang, “Increases in peptide Y-Y levels following oat beta-glucan ingestion are dose-dependent in overweight adults,” Nutrition Research, vol. 29, no. 10, pp. 705–709, 2009. View at Google Scholar · View at Scopus
  275. W. E. Longo, G. H. Ballantyne, P. E. Savoca, T. E. Adrian, A. J. Bilchik, and I. M. Modlin, “Short-chain fatty acid release of peptide YY in the isolated rabbit distal colon,” Scandinavian Journal of Gastroenterology, vol. 26, no. 4, pp. 442–448, 1991. View at Google Scholar · View at Scopus
  276. C. Cherbut, L. Ferrier, C. Rozé et al., “Short-chain fatty acids modify colonic motility through nerves and polypeptide YY release in the rat,” American Journal of Physiology, vol. 275, no. 6, pp. G1415–G1422, 1998. View at Google Scholar · View at Scopus
  277. S. I. Karaki, R. Mitsui, H. Hayashi et al., “Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine,” Cell and Tissue Research, vol. 324, no. 3, pp. 353–360, 2006. View at Publisher · View at Google Scholar · View at Scopus
  278. J. J. Holst, “The physiology of glucagon-like peptide 1,” Physiological Reviews, vol. 87, no. 4, pp. 1409–1439, 2007. View at Publisher · View at Google Scholar · View at Scopus
  279. R. M. Elliott, L. M. Morgan, J. A. Tredger, S. Deacon, J. Wright, and V. Marks, “Glucagon-like peptide-1(7-36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns,” Journal of Endocrinology, vol. 138, no. 1, pp. 159–166, 1993. View at Google Scholar · View at Scopus
  280. M. D. Turton, D. O'Shea, I. Gunn et al., “A role for glucagon-like peptide-1 in the central regulation of feeding,” Nature, vol. 379, no. 6560, pp. 69–72, 1996. View at Publisher · View at Google Scholar · View at Scopus
  281. H. R. Davis, D. E. Mnllins, J. M. Pines et al., “Effect of chronic central administration of glucagon-like peptide-1 (7-36) amide on food consumption and body weight in normal and obese rats,” Obesity Research, vol. 6, no. 2, pp. 147–156, 1998. View at Google Scholar · View at Scopus
  282. C. Verdich, A. Flint, J. P. Gutzwiller et al., “A meta-analysis of the effect of glucagon-like peptide-1 (7-36) amide on Ad Libitum energy intake in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 9, pp. 4382–4389, 2001. View at Publisher · View at Google Scholar · View at Scopus
  283. P. D. Cani, S. Hoste, Y. Guiot, and N. M. Delzenne, “Dietary non-digestible carbohydrates promote L-cell differentiation in the proximal colon of rats,” British Journal of Nutrition, vol. 98, no. 1, pp. 32–37, 2007. View at Publisher · View at Google Scholar · View at Scopus
  284. T. C. M. Adam and M. S. Westerterp-Plantenga, “Nutrient-stimulated GLP-1 release in normal-weight men and women,” Hormone and Metabolic Research, vol. 37, no. 2, pp. 111–117, 2005. View at Publisher · View at Google Scholar · View at Scopus
  285. A. Raben, A. Tagliabue, N. J. Christensen, J. Madsen, J. J. Holst, and A. Astrup, “Resistant starch: the effect on postprandial glycemia, hormonal response, and satiety,” American Journal of Clinical Nutrition, vol. 60, no. 4, pp. 544–551, 1994. View at Google Scholar · View at Scopus
  286. G. S. Frost, A. E. Brynes, W. S. Dhillo, S. R. Bloom, and M. I. McBurney, “The effects of fiber enrichment of pasta and fat content on gastric emptying, GLP-1, glucose, and insulin responses to a meal,” European Journal of Clinical Nutrition, vol. 57, no. 2, pp. 293–298, 2003. View at Publisher · View at Google Scholar · View at Scopus
  287. S. P. Massimino, M. I. McBurney, C. J. Field et al., “Fermentable dietary fiber increases GLP-1 secretion and improves glucose homeostasis despite increased intestinal glucose transport capacity in healthy dogs,” Journal of Nutrition, vol. 128, no. 10, pp. 1786–1793, 1998. View at Google Scholar · View at Scopus
  288. P. D. Cani, C. Dewever, and N. M. Delzenne, “Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats,” British Journal of Nutrition, vol. 92, no. 3, pp. 521–526, 2004. View at Publisher · View at Google Scholar · View at Scopus
  289. N. M. Delzenne, P. D. Cani, C. Daubioul, and A. M. Neyrinck, “Impact of inulin and oligofructose on gastrointestinal peptides,” British Journal of Nutrition, vol. 93, pp. S157–S161, 2005. View at Publisher · View at Google Scholar · View at Scopus
  290. M. J. Keenan, J. Zhou, K. L. McCutcheon et al., “Effects of resistant starch, a non-digestible fermentable fiber, on reducing body fat,” Obesity, vol. 14, no. 9, pp. 1523–1534, 2006. View at Publisher · View at Google Scholar
  291. E. Delmée, P. D. Cani, G. Gual et al., “Relation between colonic proglucagon expression and metabolic response to oligofructose in high fat diet-fed mice,” Life Sciences, vol. 79, no. 10, pp. 1007–1013, 2006. View at Publisher · View at Google Scholar · View at Scopus
  292. J. Zhou, M. Hegsted, K. L. McCutcheon et al., “Peptide YY and proglucagon mRNA expression patterns and regulation in the gut,” Obesity, vol. 14, no. 4, pp. 683–689, 2006. View at Publisher · View at Google Scholar
  293. J. Zhou, R. J. Martin, R. T. Tulley et al., “Dietary resistant starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in rodents,” American Journal of Physiology, vol. 295, no. 5, pp. E1160–E1166, 2008. View at Publisher · View at Google Scholar · View at Scopus
  294. T. Piche, S. B. Des Varannes, S. Sacher-Huvelin, J. J. Holst, J. C. Cuber, and J. P. Galmiche, “Colonic fermentation influences lower esophageal sphincter function in gastroesophageal reflux disease,” Gastroenterology, vol. 124, no. 4, pp. 894–902, 2003. View at Publisher · View at Google Scholar · View at Scopus
  295. F. Greenway, C. E. O'Neil, L. Stewart, J. Rood, M. Keenan, and R. Martin, “Fourteen weeks of treatment with Viscofiber increased fasting levels of glucagon-like peptide-1 and peptide-YY,” Journal of Medicinal Food, vol. 10, no. 4, pp. 720–724, 2007. View at Publisher · View at Google Scholar · View at Scopus
  296. P. D. Cani, E. Lecourt, E. M. Dewulf et al., “Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal,” American Journal of Clinical Nutrition, vol. 90, no. 5, pp. 1236–1243, 2009. View at Publisher · View at Google Scholar · View at Scopus
  297. J. M. Gee and I. T. Johnson, “Dietary lactitol fermentation increases circulating peptide YY and glucagon-like peptide-1 in rats and humans,” Nutrition, vol. 21, no. 10, pp. 1036–1043, 2005. View at Publisher · View at Google Scholar · View at Scopus
  298. G. Frost, A. Brynes, and A. Leeds, “Effect of large bowel fermentation on insulin, glucose, free fatty acids, and glucagon-like peptide 1 (7-36) amide in patients with coronary heart disease,” Nutrition, vol. 15, no. 3, pp. 183–188, 1999. View at Publisher · View at Google Scholar · View at Scopus
  299. T. May, R. I. Mackie, G. C. Fahey, J. C. Cremin, and K. A. Garleb, “Effect of fiber source on short-chain fatty acid production and on the growth and toxin production by clostridium difficile,” Scandinavian Journal of Gastroenterology, vol. 29, no. 10, pp. 916–922, 1994. View at Google Scholar · View at Scopus
  300. J. Gibbs, R. C. Young, and G. P. Smith, “Cholecystokinin decreases food intake in rats,” Journal of Comparative and Physiological Psychology, vol. 84, no. 3, pp. 488–495, 1973. View at Google Scholar · View at Scopus
  301. R. A. Liddle, I. D. Goldfine, and M. S. Rosen, “Cholecystokinin bioactivity in human plasma. Molecular forms, responses to feeding, and relationship to gallbladder contraction,” Journal of Clinical Investigation, vol. 75, no. 4, pp. 1144–1152, 1985. View at Google Scholar · View at Scopus
  302. H. R. Kissileff, F. X. Pi-Sunyer, J. Thornton, and G. P. Smith, “C-terminal octapeptide of cholecystokinin decreases food intake in man,” American Journal of Clinical Nutrition, vol. 34, no. 2, pp. 154–160, 1981. View at Google Scholar · View at Scopus
  303. B. Burton-Freeman, P. A. Davis, and B. O. Schneeman, “Plasma cholecystokinin is associated with subjective measures of satiety in women,” American Journal of Clinical Nutrition, vol. 76, no. 3, pp. 659–667, 2002. View at Google Scholar · View at Scopus
  304. A. F. Heini, C. Lara-Castro, H. Schneider, K. A. Kirk, R. V. Considine, and R. L. Weinsier, “Effect of hydrolyzed guar fiber on fasting and postprandial satiety and satiety hormones: a double-blind, placebo-controlled trial during controlled weight loss,” International Journal of Obesity, vol. 22, no. 9, pp. 906–909, 1998. View at Google Scholar
  305. I. Bourdon, B. Olson, R. Backus, B. D. Richter, P. A. Davis, and B. O. Schneeman, “Beans, as a source of dietary fiber, increase cholecystokinin and apolipoprotein B48 response to test meals in men,” Journal of Nutrition, vol. 131, no. 5, pp. 1485–1490, 2001. View at Google Scholar · View at Scopus
  306. V. Sileikiene, R. Mosenthin, E. Bauer et al., “Effect of ileal infusion of short-chain fatty acids on pancreatic prandial secretion and gastrointestinal hormones in pigs,” Pancreas, vol. 37, no. 2, pp. 196–202, 2008. View at Publisher · View at Google Scholar · View at Scopus
  307. M. Kojima, H. Hosoda, Y. Date, M. Nakazato, H. Matsuo, and K. Kangawa, “Ghrelin is a growth-hormone-releasing acylated peptide from stomach,” Nature, vol. 402, no. 6762, pp. 656–660, 1999. View at Publisher · View at Google Scholar · View at Scopus
  308. D. E. Cummings, J. Q. Purnell, R. S. Frayo, K. Schmidova, B. E. Wisse, and D. S. Weigle, “A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans,” Diabetes, vol. 50, no. 8, pp. 1714–1719, 2001. View at Google Scholar · View at Scopus
  309. M. Tschop, D. L. Smiley, and M. L. Heiman, “Ghrelin induces adiposity in rodents,” Nature, vol. 407, no. 6806, pp. 908–913, 2000. View at Publisher · View at Google Scholar · View at Scopus
  310. M. Nakazato, N. Murakami, Y. Date et al., “A role for ghrelin in the central regulation of feeding,” Nature, vol. 409, no. 6817, pp. 194–198, 2001. View at Publisher · View at Google Scholar · View at Scopus
  311. J. Nedvídková, I. Krykorková, V. Barták et al., “Loss of meal-induced decrease in plasma ghrelin levels in patients with anorexia nervosa,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 4, pp. 1678–1682, 2003. View at Publisher · View at Google Scholar
  312. J. Erdmann, F. Lippl, and V. Schusdziarra, “Differential effect of protein and fat on plasma ghrelin levels in man,” Regulatory Peptides, vol. 116, no. 1–3, pp. 101–107, 2003. View at Publisher · View at Google Scholar · View at Scopus
  313. L. J. Karhunen, S. Flander, K. H. Liukkonen et al., “Fiber effectively inhibits postprandial decrease in plasma ghrelin concentration,” Abstract Obesity Reviews, vol. 6, p. 59, 2005. View at Google Scholar
  314. M. Möhlig, C. Koebnick, M. O. Weickert et al., “Arabinoxylan-enriched meal increases serum ghrelin levels in healthy humans,” Hormone and Metabolic Research, vol. 37, no. 5, pp. 303–308, 2005. View at Publisher · View at Google Scholar · View at Scopus
  315. J. Tarini and T. M. S. Wolever, “The fermentable fibre inulin increases postprandial serum short-chain fatty acids and reduces free-fatty acids and ghrelin in healthy subjects,” Applied Physiology, Nutrition and Metabolism, vol. 35, no. 1, pp. 9–16, 2010. View at Publisher · View at Google Scholar · View at Scopus
  316. B. Sloth, L. Davidsen, J. J. Holst, A. Flint, and A. Astrup, “Effect of subcutaneous injections of PYY1-36 and PYY 3-36 on appetite, ad libitum energy intake, and plasma free fatty acid concentration in obese males,” American Journal of Physiology, vol. 293, no. 2, pp. E604–E609, 2007. View at Publisher · View at Google Scholar
  317. B. Hagander, N. G. Asp, and S. Efendic, “Reduced glycemic response to beet-fibre meal in non-insulin-dependent diabetics and its relation to plasma levels of pancreatic and gastrointestinal hormones,” Diabetes Research, vol. 3, no. 2, pp. 91–96, 1986. View at Google Scholar · View at Scopus
  318. M. Shimada, Y. Date, M. S. Mondal et al., “Somatostatin suppresses ghrelin secretion from the rat stomach,” Biochemical and Biophysical Research Communications, vol. 302, no. 3, pp. 520–525, 2003. View at Publisher · View at Google Scholar · View at Scopus
  319. H. Nørrelund, T. K. Hansen, H. Ørskov et al., “Ghrelin immunoreactivity in human plasma is suppressed by somatostatin,” Clinical Endocrinology, vol. 57, no. 4, pp. 539–546, 2002. View at Publisher · View at Google Scholar
  320. F. Lippl, F. Kircher, J. Erdmann, H. D. Allescher, and V. Schusdziarra, “Effect of GIP, GLP-1, insulin and gastrin on ghrelin release in the isolated rat stomach,” Regulatory Peptides, vol. 119, no. 1-2, pp. 93–98, 2004. View at Publisher · View at Google Scholar · View at Scopus
  321. Y. Mälkki and E. Virtanen, “Gastrointestinal effects of oat bran and oat gum a review,” Lebensmittel-Wissenschaft Technologie, vol. 34, no. 6, pp. 337–347, 2001. View at Publisher · View at Google Scholar
  322. E. Lanza, D. Y. Jones, G. Block, and L. Kessler, “Dietary fiber intake in the US population,” American Journal of Clinical Nutrition, vol. 46, no. 5, pp. 790–797, 1987. View at Google Scholar · View at Scopus
  323. J. W. Anderson, S. R. Bridges, J. Tietyen, and N. J. Gustafson, “Dietary fiber content of a simulated American diet and selected research diets,” American Journal of Clinical Nutrition, vol. 49, no. 2, pp. 352–357, 1989. View at Google Scholar · View at Scopus
  324. J. L. Tillotson, G. E. Bartsch, D. Gorder, G. A. Grandits, and J. Stamler, “Food group and nutrient intakes at baseline in the Multiple Risk Factor Intervention Trial,” American Journal of Clinical Nutrition, vol. 65, no. 1, pp. 228S–257S, 1997. View at Google Scholar · View at Scopus
  325. J. Hallfrisch, J. D. Tobin, D. C. Muller, and R. Andres, “Fiber intake, age, and other coronary risk factors in men of the Baltimore Longitudinal Study (1959–1975),” Journals of Gerontology, vol. 43, no. 3, pp. M64–M68, 1988. View at Google Scholar · View at Scopus
  326. J. R. Hermann, C. F. Hanson, and B. H. Kopel, “Fiber intake of older adults: relationship to mineral intakes,” Journal of Nutrition for the Elderly, vol. 11, no. 4, pp. 21–33, 1992. View at Google Scholar · View at Scopus
  327. Nova Scotia Department of Health, Report of the Nova Scotia Nutrition Survey, 1993.
  328. T. C. Schenkel, N. K. A. Stockman, J. N. Brown, and A. M. Duncan, “Evaluation of energy, nutrient and dietary fiber intakes of adolescent males,” Journal of the American College of Nutrition, vol. 26, no. 3, pp. 264–271, 2007. View at Google Scholar · View at Scopus
  329. S. M. Bagheri and G. Debry, “Evaluation of average daily consumption of dietary fiber in France,” Annals of Nutrition and Metabolism, vol. 34, no. 2, pp. 69–75, 1990. View at Google Scholar · View at Scopus
  330. G. Arbman, O. Axelson, A. B. Ericsson-Begodzki, M. Fredriksson, E. Nilsson, and R. Sjodahl, “Cereal fiber, calcium, and colorectal cancer,” Cancer, vol. 69, no. 8, pp. 2042–2048, 1992. View at Google Scholar · View at Scopus
  331. S. M. Virtanen and P. Varo, “Dietary fibre and fibre fractions in the diet of Finnish diabetic and non-diabetic adolescents,” European Journal of Clinical Nutrition, vol. 42, no. 2, pp. 169–175, 1988. View at Google Scholar · View at Scopus
  332. U. Pechanek and W. Pfannhauser, “Examples of the fiber content of foods today,” Zeitschrift fur die Gesamte Innere Medizin und Ihre Grenzgebiete, vol. 46, no. 13, pp. 486–490, 1991. View at Google Scholar · View at Scopus
  333. K. F. A. M. Hulshof, M. R. H. Lowik, C. Kistemaker, R. J. J. Hermus, F. Ten Hoor, and T. Ockhuizen, “Comparison of dietary intake data with guidelines: some potential pitfalls (Dutch nutrition surveillance system),” Journal of the American College of Nutrition, vol. 12, no. 2, pp. 176–185, 1993. View at Google Scholar · View at Scopus
  334. S. Beer-Borst, B. Wellauer-Weber, and R. Amado, “Dietary fiber intake of a Swiss collective interested in nutrition,” Zeitschrift fur Ernahrungswissenschaft, vol. 33, no. 1, pp. 68–78, 1994. View at Google Scholar · View at Scopus
  335. P. M. Emmett, C. L. Symes, and K. W. Heaton, “Dietary intake and sources of non-starch polysaccharide in English men and women,” European Journal of Clinical Nutrition, vol. 47, no. 1, pp. 20–30, 1993. View at Google Scholar · View at Scopus
  336. A. Tarrega and E. Costell, “Effect of composition on the rheological behaviour and sensory properties of semisolid dairy dessert,” Food Hydrocolloids, vol. 20, no. 6, pp. 914–922, 2006. View at Publisher · View at Google Scholar · View at Scopus
  337. A. Tárrega and E. Costell, “Effect of inulin addition on rheological and sensory properties of fat-free starch-based dairy desserts,” International Dairy Journal, vol. 16, no. 9, pp. 1104–1112, 2006. View at Publisher · View at Google Scholar · View at Scopus
  338. B. Villegas and E. Costell, “Flow behaviour of inulin-milk beverages. Influence of inulin average chain length and of milk fat content,” International Dairy Journal, vol. 17, no. 7, pp. 776–781, 2007. View at Publisher · View at Google Scholar · View at Scopus
  339. A. S. Akalin, C. Karagözlü, and G. Ünal, “Rheological properties of reduced-fat and low-fat ice cream containing whey protein isolate and inulin,” European Food Research and Technology, vol. 227, no. 3, pp. 889–895, 2008. View at Publisher · View at Google Scholar · View at Scopus
  340. V. Aykan, E. Sezgin, and Z. B. Guzel-Seydim, “Use of fat replacers in the production of reduced-calorie vanilla ice cream,” European Journal of Lipid Science and Technology, vol. 110, no. 6, pp. 516–520, 2008. View at Publisher · View at Google Scholar · View at Scopus
  341. O. B. Karaca, M. Güven, K. Yasar, S. Kaya, and T. Kahyaoglu, “The functional, rheological and sensory characteristics of ice creams with various fat replacers,” International Journal of Dairy Technology, vol. 62, no. 1, pp. 93–99, 2009. View at Publisher · View at Google Scholar · View at Scopus
  342. A. Lazaridou, C. G. Biliaderis, M. Micha-Screttas, and B. R. Steele, “A comparative study on structure-function relations of mixed-linkage (1→3), (1→4) linear β-D-glucans,” Food Hydrocolloids, vol. 18, no. 5, pp. 837–855, 2004. View at Publisher · View at Google Scholar · View at Scopus
  343. S. Lee, G. E. Inglett, D. Palmquist, and K. Warner, “Flavor and texture attributes of foods containing β-glucan-rich hydrocolloids from oats,” Lebensmittel-Wissenschaft Technologie, vol. 42, no. 1, pp. 350–357, 2009. View at Publisher · View at Google Scholar · View at Scopus
  344. K. W. Hunter, R. A. Gault, and M. D. Berner, “Preparation of microparticulate β-glucan from Saccharomyces cerevisiae for use in immune potentiation,” Letters in Applied Microbiology, vol. 35, no. 4, pp. 267–271, 2002. View at Publisher · View at Google Scholar · View at Scopus
  345. D. Kalinga and V. K. Mishra, “Rheological and physical properties of low fat cakes produced by addition of cereal β-glucan concentrates,” Journal of Food Processing and Preservation, vol. 33, no. 3, pp. 384–400, 2009. View at Publisher · View at Google Scholar · View at Scopus
  346. U. Tiwari and E. Cummins, “Factors influencing β-glucan levels and molecular weight in cereal-based products,” Cereal Chemistry, vol. 86, no. 3, pp. 290–301, 2009. View at Publisher · View at Google Scholar · View at Scopus
  347. M. Saarela, I. Virkajärvi, L. Nohynek, A. Vaari, and J. Mättö, “Fibres as carriers for Lactobacillus rhamnosus during freeze-drying and storage in apple juice and chocolate-coated breakfast cereals,” International Journal of Food Microbiology, vol. 112, no. 2, pp. 171–178, 2006. View at Publisher · View at Google Scholar · View at Scopus
  348. T. R. Gormley and A. Morrissey, “A note on the evaluation of wheaten breads containing oat flour or oat flakes,” Irish Journal of Agricultural and Food Research, vol. 32, pp. 205–209, 1999. View at Google Scholar
  349. G. E. Inglett, S. C. Peterson, C. J. Carriere, and S. Maneepun, “Rheological, textural, and sensory properties of Asian noodles containing an oat cereal hydrocolloid,” Food Chemistry, vol. 90, no. 1-2, pp. 1–8, 2005. View at Publisher · View at Google Scholar · View at Scopus
  350. E. Fernández-García, J. U. McGregor, and S. Traylor, “The addition of oat fiber and natural alternative sweeteners in the manufacture of plain yogurt,” Journal of Dairy Science, vol. 81, no. 3, pp. 655–663, 1998. View at Google Scholar · View at Scopus
  351. G. Konuklar, G. E. Inglett, K. Warner, and C. J. Carriere, “Use of a β-glucan hydrocolloidal suspension in the manufacture of low-fat Cheddar cheeses: textural properties by instrumental methods and sensory panels,” Food Hydrocolloids, vol. 18, no. 4, pp. 535–545, 2004. View at Publisher · View at Google Scholar · View at Scopus
  352. P. Volikakis, C. G. Biliaderis, C. Vamvakas, and G. K. Zerfiridis, “Effects of a commercial oat-β-glucan concentrate on the chemical, physico-chemical and sensory attributes of a low-fat white-brined cheese product,” Food Research International, vol. 37, no. 1, pp. 83–94, 2004. View at Publisher · View at Google Scholar · View at Scopus
  353. A. Angelov, V. Gotcheva, R. Kuncheva, and T. Hristozova, “Development of a new oat-based probiotic drink,” International Journal of Food Microbiology, vol. 112, no. 1, pp. 75–80, 2006. View at Publisher · View at Google Scholar · View at Scopus
  354. O. Mårtensson, C. Andersson, K. Andersson, R. Öste, and O. Holst, “Formulation of an oat-based fermented product and its comparison with yoghurt,” Journal of the Science of Food and Agriculture, vol. 81, no. 14, pp. 1314–1321, 2001. View at Publisher · View at Google Scholar · View at Scopus
  355. D. J. Troy, E. M. Desmond, and D. J. Buckley, “Eating quality of low-fat beef burgers containing fat-replacing functional blends,” Journal of the Science of Food and Agriculture, vol. 79, no. 4, pp. 507–516, 1999. View at Google Scholar · View at Scopus
  356. E. Hughes, S. Cofrades, and D. J. Troy, “Effects of fat level, oat fibre and carrageenan on frankfurters formulated with 5, 12 and 30% fat,” Meat Science, vol. 45, no. 3, pp. 273–281, 1997. View at Google Scholar · View at Scopus
  357. M. Hilliam, “Future for dairy products and ingredients in the functional foods market,” Australian Journal of Dairy Technology, vol. 58, no. 2, pp. 98–103, 2003. View at Google Scholar · View at Scopus
  358. J. Y. Thebaudin, A. C. Lefebvre, M. Harrington, and C. M. Bourgeois, “Dietary fibres: nutritional and technological interest,” Trends in Food Science and Technology, vol. 8, no. 2, pp. 41–48, 1997. View at Publisher · View at Google Scholar · View at Scopus
  359. M. Dello Staffolo, N. Bertola, M. Martino, and A. Bevilacqua, “Influence of dietary fiber addition on sensory and rheological properties of yogurt,” International Dairy Journal, vol. 14, no. 3, pp. 263–268, 2004. View at Publisher · View at Google Scholar · View at Scopus
  360. L. Johansson, P. Tuomainen, H. Anttila, H. Rita, and L. Virkki, “Effect of processing on the extractability of oat β-glucan,” Food Chemistry, vol. 105, no. 4, pp. 1439–1445, 2007. View at Publisher · View at Google Scholar · View at Scopus
  361. S. M. Tosh, Y. Brummer, T. M. S. Wolever, and P. J. Wood, “Glycemic response to oat bran muffins treated to vary molecular weight of β-glucan,” Cereal Chemistry, vol. 85, no. 2, pp. 211–217, 2008. View at Publisher · View at Google Scholar · View at Scopus
  362. A. Regand, S. M. Tosh, T. M. Wolever, and P. J. Wood, “Physicochemical properties of glucan in differently processed oat foods influence glycemie response,” Journal of Agricultural and Food Chemistry, vol. 57, no. 19, pp. 8831–8838, 2009. View at Publisher · View at Google Scholar
  363. L. Degutyte-Fomins, T. Sontag-Strohm, and H. Salovaara, “Oat bran fermentation by rye sourdough,” Cereal Chemistry, vol. 79, no. 3, pp. 345–348, 2002. View at Google Scholar · View at Scopus
  364. A. A. M. Andersson, N. Rüegg, and P. Åman, “Molecular weight distribution and content of water-extractable β-glucan in rye crisp bread,” Journal of Cereal Science, vol. 47, no. 3, pp. 399–406, 2008. View at Publisher · View at Google Scholar
  365. A. A. M. Andersson, E. Armö, E. Grangeon, H. Fredriksson, R. Andersson, and P. Åman, “Molecular weight and structure units of (1→3, 1→4)-β-glucans in dough and bread made from hull-less barley milling fractions,” Journal of Cereal Science, vol. 40, no. 3, pp. 195–204, 2004. View at Publisher · View at Google Scholar · View at Scopus
  366. J. Frank, B. Sundberg, A. Kamal-Eldin, B. Vessby, and P. Åman, “Yeast-leavened oat breads with high or low molecular weight β-glucan do not differ in their effects on blood concentrations of lipids, insulin, or glucose in humans,” Journal of Nutrition, vol. 134, no. 6, pp. 1384–1388, 2004. View at Google Scholar · View at Scopus
  367. X. Lan-Pidhainey, The physiochemical properties of oat B-glucan and its ability to attenuate postprandial glycaemic response, M.S. thesis, Department of Nutritional Sciences, University of Toronto, Canada, 2006.
  368. Institute of Medicine: Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids (Macronutrients), http://www.nap.edu/openbook.php?isbn=0309085373.
  369. Health and Welfare Canada, Report of the expert advisory committee on dietary fibre, 1985.
  370. Health Canada, Guideline concerning the safety and physiological effects of Novel fibre sources and food products containing them, 1988.
  371. European Food Safety Authority, “Outcome of the public consultation on the draft opinion of the scientific panel on dietetic products, nutrition and allergies (NDA) on dietary reference values for carbohydrates and dietary fibre,” EFSA Journal, vol. 8, no. 5, p. 1508, 2010. View at Google Scholar
  372. FSANZ: Food Standards Code, Standard 1.2.8: Nutrition Information Requirements, http://www.foodstandards.gov.au/foodstandards/foodstandardscode.cfm.
  373. Health Canada: Proposed Policy: Definition and Energy Value for Dietary Fibre, http://www.hc-sc.gc.ca/fn-an/consult/fibre-fibres/consul-fibre-fibres-eng.php.