Table of Contents Author Guidelines Submit a Manuscript
Journal of Nutrition and Metabolism
Volume 2018, Article ID 7497260, 11 pages
https://doi.org/10.1155/2018/7497260
Clinical Study

Efficacy of an Anthocyanin and Prebiotic Blend on Intestinal Environment in Obese Male and Female Subjects

1Pharmanex Research, NSE Products Inc., 75 West Center Street, Provo, UT 84601, USA
2KGK Science Inc., 255 Queens Avenue, Suite 1440, London, Ontario, Canada N6A 5R8

Correspondence should be addressed to Steven M. Wood; moc.niksun@wevets

Received 19 March 2018; Revised 6 July 2018; Accepted 1 August 2018; Published 13 September 2018

Academic Editor: Luigi Schiavo

Copyright © 2018 Shelly N. Hester et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Li, Y. Zhang, Y. Liu, R. Sun, and M. Xia, “Purified anthocyanin supplementation reduces dyslipidemia, enhances antioxidant capacity, and prevents insulin resistance in diabetic patients,” Journal of Nutrition, vol. 145, no. 4, pp. 742–748, 2015. View at Publisher · View at Google Scholar · View at Scopus
  2. L. S. McAnulty, S. R. Collier, M. J. Landram et al., “Six weeks daily ingestion of whole blueberry powder increases natural killer cell counts and reduces arterial stiffness in sedentary males and females,” Nutrition Research, vol. 34, no. 7, pp. 577–584, 2014. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Y. Yoo and S. S. Kim, “Probiotics and prebiotics: present status and future perspectives on metabolic disorders,” Nutrients, vol. 8, no. 3, p. 173, 2016. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Mathur and G. M. Barlow, “Obesity and the microbiome,” Expert Review of Gastroenterology and Hepatology, vol. 9, no. 8, pp. 1087–1099, 2015. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Lloyd-Price, G. Abu-Ali, and C. Huttenhower, “The healthy human microbiome,” Genome Medicine, vol. 8, no. 1, p. 51, 2016. View at Publisher · View at Google Scholar · View at Scopus
  6. R. E. Ley, P. J. Turnbaugh, S. Klein, and J. I. Gordon, “Microbial ecology: human gut microbes associated with obesity,” Nature, vol. 444, no. 7122, pp. 1022-1023, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. F. J. Verdam, S. Fuentes, C. de Jonge et al., “Human intestinal microbiota composition is associated with local and systemic inflammation in obesity,” Obesity, vol. 21, no. 12, pp. E607–E615, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. P. J. Turnbaugh, R. E. Ley, M. A. Mahowald, V. Magrini, E. R. Mardis, and J. I. Gordon, “An obesity-associated gut microbiome with increased capacity for energy harvest,” Nature, vol. 444, no. 7122, pp. 1027–1031, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Bajzer and R. J. Seeley, “Physiology: obesity and gut flora,” Nature, vol. 444, no. 7122, pp. 1009-1010, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Jamar, D. Estadella, and L. P. Pisani, “Contribution of anthocyanin-rich foods in obesity control through gut microbiota interactions,” BioFactors, vol. 43, no. 4, pp. 507–516, 2017. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Guglielmetti, D. Fracassetti, V. Taverniti et al., “Differential modulation of human intestinal Bifidobacterium populations after consumption of a wild blueberry (Vaccinium angustifolium) drink,” Journal of Agricultural and Food Chemistry, vol. 61, no. 34, pp. 8134–8140, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Vendrame, S. Guglielmetti, P. Riso, S. Arioli, D. Klimis-Zacas, and M. Porrini, “Six-week consumption of a wild blueberry powder drink increases bifidobacteria in the human gut,” Journal of Agricultural and Food Chemistry, vol. 59, no. 24, pp. 12815–12820, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Hidalgo, M. J. Oruna-Concha, S. Kolida et al., “Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth,” Journal of Agricultural and Food Chemistry, vol. 60, no. 15, pp. 3882–3890, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Karlsen, L. Retterstol, P. Laake et al., “Anthocyanins inhibit nuclear factor-kappaB activation in monocytes and reduce plasma concentrations of pro-inflammatory mediators in healthy adults,” Journal of Nutrition, vol. 137, no. 8, pp. 1951–1954, 2007. View at Publisher · View at Google Scholar
  15. I. Edirisinghe, K. Banaszewski, J. Cappozzo et al., “Strawberry anthocyanin and its association with postprandial inflammation and insulin,” British journal of nutrition, vol. 106, no. 6, pp. 913–922, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Puupponen-Pimia, L. Nohynek, C. Meier et al., “Antimicrobial properties of phenolic compounds from berries,” Journal of Applied Microbiology, vol. 90, no. 4, pp. 494–507, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Kahle, M. Kraus, W. Scheppach, M. Ackermann, F. Ridder, and E. Richling, “Studies on apple and blueberry fruit constituents: do the polyphenols reach the colon after ingestion?” Molecular Nutrition and Food Research, vol. 50, no. 4-5, pp. 418–423, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. I. A. Ludwig, P. Mena, L. Calani et al., “New insights into the bioavailability of red raspberry anthocyanins and ellagitannins,” Free Radical Biology and Medicine, vol. 89, pp. 758–769, 2015. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Gonzalez-Barrio, G. Borges, W. Mullen, and A. Crozier, “Bioavailability of anthocyanins and ellagitannins following consumption of raspberries by healthy humans and subjects with an ileostomy,” Journal of Agricultural and Food Chemistry, vol. 58, no. 7, pp. 3933–3939, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Tsuda, “Recent progress in anti-obesity and anti-diabetes effect of berries,” Antioxidants, vol. 5, no. 2, p. 13, 2016. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Hidaka, “Effects of fructooligosaccharides on intestinal flora and human health,” Bifidobacteria and Microflora, vol. 5, no. 1, pp. 37–50, 1986. View at Publisher · View at Google Scholar
  22. Y. Bouhnik, L. Raskine, G. Simoneau, D. Paineau, and F. Bornet, “The capacity of short-chain fructo-oligosaccharides to stimulate faecal bifidobacteria: a dose-response relationship study in healthy humans,” Nutrition Journal, vol. 5, no. 1, p. 8, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Tokunaga, “Effects of fructooligosaccharide intake on the intestinal flora and defecation in healthy volunteers,” Bifidus, vol. 350, pp. 143–150, 1993. View at Google Scholar
  24. G. R. Gibson, E. R. Beatty, X. Wang, and J. H. Cummings, “Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin,” Gastroenterology, vol. 108, no. 4, pp. 975–982, 1995. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Kolida, D. Meyer, and G. R. Gibson, “A double-blind placebo-controlled study to establish the bifidogenic dose of inulin in healthy humans,” European Journal of Clinical Nutrition, vol. 61, no. 10, pp. 1189–1195, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. V. de Preter, T. Vanhoutte, G. Huys, J. Swings, P. Rutgeerts, and K. Verbeke, “Baseline microbiota activity and initial bifidobacteria counts influence responses to prebiotic dosing in healthy subjects,” Alimentary Pharmacology and Therapeutics, vol. 27, no. 6, pp. 504–513, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Bouhnik, “Prolonged administration of low-dose inulin stimulates the growth of bifidobacteria in humans,” Nutrition Research, vol. 27, no. 4, pp. 187–193, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. J. G. Caporaso, J. Kuczynski, J. Stombaugh et al., “QIIME allows analysis of high-throughput community sequencing data,” Nature Methods, vol. 7, no. 5, pp. 335-336, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Raqib, B. Wretlind, J. Andersson, and A. A. Lindberg, “Cytokine secretion in acute shigellosis is correlated to disease activity and directed more to stool than to plasma,” Journal of Infectious Diseases, vol. 171, no. 2, pp. 376–384, 1995. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Ko, Z. D. Jiang, P. C. Okhuysen, and H. L. DuPont, “Fecal cytokines and markers of intestinal inflammation in international travelers with diarrhea due to Noroviruses,” Journal of Medical Virology, vol. 78, no. 6, pp. 825–828, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. S. J. Lewis and K. W. Heaton, “Stool form scale as a useful guide to intestinal transit time,” Scandinavian Journal of Gastroenterology, vol. 32, no. 9, pp. 920–924, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. L. K. Stenman, M. J. Lehtinen, N. Meland et al., “Probiotic with or without fiber controls body fat mass, associated with serum zonulin, in overweight and obese adults-randomized controlled trial,” EBioMedicine, vol. 13, pp. 190–200, 2016. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Koliada, G. Syzenko, V. Moseiko et al., “Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population,” BMC Microbiology, vol. 17, no. 1, p. 120, 2017. View at Publisher · View at Google Scholar · View at Scopus
  34. E. A. Murphy, K. T. Velazquez, and K. M. Herbert, “Influence of high-fat diet on gut microbiota: a driving force for chronic disease risk,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 18, no. 5, pp. 515–520, 2015. View at Publisher · View at Google Scholar · View at Scopus
  35. E. M. Dewulf, P. D. Cani, S. P. Claus et al., “Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women,” Gut, vol. 62, no. 8, pp. 1112–1121, 2013. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Krajmalnik-Brown, Z. E. Ilhan, D. W. Kang, and J. K. DiBaise, “Effects of gut microbes on nutrient absorption and energy regulation,” Nutrition in Clinical Practice, vol. 27, no. 2, pp. 201–214, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Poullis, R. Foster, A. Shetty, M. K. Fagerhol, and M. A. Mendall, “Bowel inflammation as measured by fecal calprotectin: a link between lifestyle factors and colorectal cancer risk,” Cancer Epidemiology, Biomarkers and Prevention, vol. 13, no. 2, pp. 279–284, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Brignardello, P. Morales, E. Diaz, J. Romero, O. Brunser, and M. Gotteland, “Pilot study: alterations of intestinal microbiota in obese humans are not associated with colonic inflammation or disturbances of barrier function,” Alimentary Pharmacology and Therapeutics, vol. 32, no. 11-12, pp. 1307–1314, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Kant, R. Fazakerley, and M. A. Hull, “Faecal calprotectin levels before and after weight loss in obese and overweight subjects,” International Journal of Obesity, vol. 37, no. 2, pp. 317–319, 2013. View at Publisher · View at Google Scholar · View at Scopus
  40. M. A. Mendall, D. Chan, R. Patel, and D. Kumar, “Faecal calprotectin: factors affecting levels and its potential role as a surrogate marker for risk of development of Crohn’s disease,” BMC Gastroenterology, vol. 16, no. 1, p. 126, 2016. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Bouhnik, L. Achour, D. Paineau, M. Riottot, A. Attar, and F. Bornet, “Four-week short chain fructo-oligosaccharides ingestion leads to increasing fecal bifidobacteria and cholesterol excretion in healthy elderly volunteers,” Nutrition Journal, vol. 6, no. 1, p. 42, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. F. Briet, L. Achour, B. Flourie et al., “Symptomatic response to varying levels of fructo-oligosaccharides consumed occasionally or regularly,” European Journal of Clinical Nutrition, vol. 49, no. 7, pp. 501–507, 1995. View at Google Scholar
  43. A. Jennings, A. A. Welch, T. Spector, A. Macgregor, and A. Cassidy, “Intakes of anthocyanins and flavones are associated with biomarkers of insulin resistance and inflammation in women,” Journal of Nutrition, vol. 144, no. 2, pp. 202–208, 2014. View at Publisher · View at Google Scholar · View at Scopus
  44. N. M. Wedick, A. Pan, A. Cassidy et al., “Dietary flavonoid intakes and risk of type 2 diabetes in US men and women,” American Journal of Clinical Nutrition, vol. 95, no. 4, pp. 925–933, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Hidalgo, C. Flores, M. A. Hidalgo et al., “Delphinol® standardized maqui berry extract reduces postprandial blood glucose increase in individuals with impaired glucose regulation by novel mechanism of sodium glucose cotransporter inhibition,” Panminerva Medica, vol. 56, no. 2, pp. 1–7, 2014. View at Google Scholar
  46. R. Torronen, E. Sarkkinen, N. Tapola, E. Hautaniemi, K. Kilpi, and L. Niskanen, “Berries modify the postprandial plasma glucose response to sucrose in healthy subjects,” British Journal of Nutrition, vol. 103, no. 8, pp. 1094–1097, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. E. Daveri, E. Cremonini, A. Mastaloudis et al., “Cyanidin and delphinidin modulate inflammation and altered redox signaling improving insulin resistance in high fat-fed mice,” Redox Biology, vol. 18, pp. 16–24, 2018. View at Publisher · View at Google Scholar · View at Scopus