Review Article

Recent Advancement in Functional Core-Shell Nanoparticles of Polymers: Synthesis, Physical Properties, and Applications in Medical Biotechnology

Table 1

Various synthesis approaches and applications of few important core-shell nanoparticles with polymer.

Sl. no.Materials Synthesis methodProperties/usesAverage size of
Core-shell particle
References

1Carbon black/polypyrroleIn situ chemical oxidative polymerizationElectrochemical energy storage 50–100 nm[13]

2BaTiO3/PMMAIn situ atom transfer radical polymerization (ARTP)High dielectric constant materials with the inherent low loss of the base polymer 150–200 nm[14]

3Polystyrene-n-butyl acrylate-methy methacrylate@silicaEmulsion polymerizationDynamic modulus30–80 nm[15]

4 Poly(vinyl amine)-silica Wet chemical route Silica precursor
for composite materials formation
200–250 nm [16]

5Silica@PMMA brushSurface initiated photopolymerizationPMMA composite with enhanced thermal and mechanical properties 100–150 nm[17]

6 CdS@PMMA Different physical and chemical routesElectrical transport properties10–200 nm[18]

7Spiropyran-silica
Two-step sol-gel synthesisPhotochromic properties 100–150 nm[19]

8 (MMA@CuO)Solution deposition method 20–30 nm[20]

9Well-defined oxide (SiO2) core-polymer (PMMA) shell Chemical route High mechanical strength 20–90 nm
[21]

10T-ZnO whiskers/PolyanilineGraft polymerizationElectrical conductivity 500 nm[22]

11 PS cores and thermosensitive poly(N-isopropylacrylamide)
(PNIPA) shells
Self-assembly encapsulationDrug diffusionLess than 100 nm[23]

12Silica-polymer (methyl methacrylate (MMA)) core-shell nanoparticles Seed copolymerizationExcellent antimicrobial20–30 nm[24]

13 PMMA@PCLCoaxial electrospraying 3–6 µm [25]

14PS@SiO2Sol-gel synthesis 200–250 nm[26]

15Fe3O4@styrene/butyl acrylateInitiator free miniemulsion polymerizationMagnetite and their corresponding
behavior
150–200 nm[27]

16Polyaniline-polystyrene
sulfonate@Fe3O4
Surface-initiated polymerizationConductive and magnetic
properties
60–200 nm[28]

17SiO2@polypyrroleIn situ polymerization through electrostatic interaction 200–300 nm[29]

18PMMA spheres with a core of Fe3O4Spontaneous Pickering emulsification50–80 nm[30]

19PS@SiO2Alcaholic dispersion polymerizationCatalytic 1000 nm[31]

20Poly(2-vinylpyridine)
@silica
Emulsion polymerizationCationic azo initiator 200 nm[32]

21SiO2@Poly(3-aminophenylboronic acid) (PABBA)Ultrasonic irradiation method Conductivity 100–200 nm[33]

22Collagen-g-PMMA
Ag@TiO2
Collagen-g-PMMA@TiO2
Graft polymerization
water in oil emulsion polymerization
ultrasonic irradiation
Lower infrared emissivity 60–100 nm[34]

23SiO2@polyanilineIn situ polymerizationHigh electrical conductivity 20–30 nm[35]

24PANI@Fe3O4Ultrasonic polymerization to assist chemical oxidative polymerizationDecreases its electrical conductivity 20–25 nm[36]

25 @PAM
PAM: polyacrylamide
UV assisted in situ surface initiated free radical polymerizationGood
dispersion stability
50–200 nm[37]

26 Au-impregnated polyacrylonitrile (PAN)/polythiophene (PTH) core-shell
nanofibers
Shadow maskHigh-performance semiconducting properties 30–50 nm [38]

27 Smart core-shell hybrid nanogels with Ag nanoparticle core and poly(N-isopropylacrylamide- co-acrylic acid) shell Copolymerization process pH-Regulated drug delivery and for cancer cell imaging 40–80 nm[39]

28PS
cores and Au shell nanoparticle coronae
Self-assemblyHydrophobic nanoparticles80 nm[40]

29Upconverting NaYF4 nanoparticles with
PEG-phosphate ligands
Water-dispersibleBiolabeling within the
biological window
30–40 nm[41]

30Au@PEG (polyethylene glycol)Combined
swelling heteroaggregation
Dielectric applications300 nm[42]

31Ag-polystyrene Hydrothermal methodCharacteristic plasmon resonance200 nm[43]

32 Ag@poly(acrylic acid)
In situ immobilizationTunable photoluminescence, act as multiple-sensitive
hybrid microgels
100 nm[44]

33Highly controlled core (Au/shell (PANI) structures
In situ polymerization,
Tunable conductive polymer61–92 nm[45]

34 Au-PS hybrid colloidal particlesPrecipitation polymerization
method
Fabricating photonic devices via a self-assembly
approach
200–250 nm[46]

35Fe3O4@polyaniline@Au NanocompositesSolvothermal reactionCatalytic activity70–80 nm[47]

36Luminescent silver@phenol formaldehyde
resin core-hell nanospheres
Facile one-step hydrothermal approachIn vivo bioimaging
180–1000 nm[48]

37Poly(butylene adipate) on the surface of SiO2Chemical routeImprove the toughness and stiffness100–1000 nm[49]

38Polyaniline-coated poly(butyl methacrylate) Chemical routePrinting technology100 nm[50]