Table of Contents
Journal of Nanoparticles
Volume 2013, Article ID 780786, 6 pages
http://dx.doi.org/10.1155/2013/780786
Research Article

Ecofriendly and Facile One-Pot Multicomponent Synthesis of Thiopyrimidines under Microwave Irradiation

1Department of Medicinal Chemistry, Roland Institute of Pharmaceutical Sciences, Khodasingi, Berhampur 760 010, India
2School of Pharmaceutical Education & Research, Berhampur University, Berhampur 760 007, Odisha, India

Received 31 December 2012; Revised 20 February 2013; Accepted 25 February 2013

Academic Editor: Alexander Kauffmann

Copyright © 2013 Biswa Mohan Sahoo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. C. Bagley and M. C. Lubinu, “Microwave-assisted multicomponent reactions for the synthesis of heterocycles,” Journal of Heterocyclic Chemistry, vol. 1, pp. 31–58, 2006. View at Google Scholar
  2. S. Ravichandran and E. Karthikeyan, “Microwave synthesis—a potential tool for green chemistry,” International Journal of ChemTech Research, vol. 3, no. 1, pp. 466–470, 2011. View at Google Scholar · View at Scopus
  3. M. Charde, A. Shukla, V. Bukhariya, J. Mehta, and R. Chakole, “A review on: a significance of microwave assist technique in green chemistry,” International Journal of Phytopharmacy, vol. 2, no. 2, pp. 39–50, 2012. View at Google Scholar
  4. B. S. Sekhon, “Microwave-assisted pharmaceutical synthesis: an overview,” International Journal of PharmTech Research, vol. 2, no. 1, pp. 827–833, 2010. View at Google Scholar · View at Scopus
  5. M. A. Surati, S. Jauhari, and K. R. Desai, “A brief review: microwave assisted organic reaction,” Archives of Applied Science Research, vol. 4, no. 1, pp. 645–661, 2012. View at Google Scholar
  6. P. Lidström, J. Tierney, B. Wathey, and J. Westman, “Microwave assisted organic synthesis—a review,” Tetrahedron, vol. 57, no. 45, pp. 9225–9283, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Loupy, Microwaves in Organic Synthesis, Wiley-VCH, Weinheim, Germany, 2006.
  8. C. O. Kappe, “Controlled microwave heating in modern organic synthesis,” Angewandte Chemie International Edition, vol. 43, no. 46, pp. 6250–6284, 2004. View at Publisher · View at Google Scholar
  9. F. R. Alexandre, L. Domon, S. Frère, A. Testard, V. Thiéry, and T. Besson, “Microwaves in drug discovery and multi-step synthesis,” Molecular Diversity, vol. 7, no. 2–4, pp. 273–280, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Caddick and R. Fitzmaurice, “Microwave enhanced synthesis,” Tetrahedron, vol. 65, no. 17, pp. 3325–3355, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Madhvi, S. J. Surati, and K. R. Desai, “A brief review: microwave assisted organic reaction,” Archives of Applied Science Research, vol. 4, no. 1, pp. 645–661, 2012. View at Google Scholar
  12. H. M. Hügel, “Microwave multicomponent synthesis,” Molecules, vol. 14, no. 12, pp. 4936–4972, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. J. L. Krstenansky and L. Cotterill, “Recent advances in microwave-assisted organic syntheses,” Current Opinion in Drug Discovery and Development, vol. 3, no. 4, pp. 454–461, 2000. View at Google Scholar · View at Scopus
  14. M. Borisagar, K. Joshi, H. Ram, K. Vyas, and K. Nimavat, “A one-pot microwave irradiation synthesis of 1,2,4-triazolo[1,5-A]pyrimidines,” Acta Chimica & Pharmaceutica Indica, vol. 2, no. 2, pp. 101–105, 2012. View at Google Scholar
  15. A. Kruithof, E. Ruijter, and V. A. Orru, “Microwave-assisted multicomponent synthesis of heterocycles,” Current Organic Chemistry, vol. 15, no. 2, pp. 204–236, 2011. View at Publisher · View at Google Scholar
  16. S. J. Vaghasia and V. H. Shah, “Microwave assisted synthesis and antimicrobial activity of some novel pyrimidine derivatives,” Journal of the Serbian Chemical Society, vol. 72, no. 2, pp. 109–117, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. J. M. Gajera and S. N. Tondlekar, “A novel and one-pot synthesis of 6-arylpyrimidin-4-ol,” Research Letters in Organic Chemistry, pp. 1–3, 2008. View at Google Scholar
  18. N. Agarwal, P. Srivastava, S. K. Raghuwanshi et al., “Chloropyrimidines as a new class of antimicrobial agents,” Bioorganic and Medicinal Chemistry, vol. 10, no. 4, pp. 869–874, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Singh, K. Singh, B. Wan, S. Franzblau, K. Chibale, and J. Balzarini, “Facile transformation of Biginelli pyrimidin-2(1H)-ones to pyrimidines. In vitro evaluation as inhibitors of Mycobacterium tuberculosis and modulators of cytostatic activity,” European Journal of Medicinal Chemistry, vol. 46, no. 6, pp. 2290–2294, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. C. O. Kappe, “A reexamination of the mechanism of the Biginelli dihydropyrimidine synthesis. Support for an N-acyliminium ion intermediate,” Journal of Organic Chemistry, vol. 62, no. 21, pp. 7201–7204, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Kidwai, K. Singhal, and S. Kukreja, “One-pot green synthesis for pyrimido[4,5-d]pyrimidine derivatives,” Zeitschrift fur Naturforschung, vol. 62, no. 5, pp. 732–736, 2007. View at Google Scholar · View at Scopus
  22. A. H. Kategaonkar, S. A. Sadaphal, K. F. Shelke, B. B. Shingate, and M. S. Shingare, “Microwave assisted synthesis of pyrimido[4,5-d]pyrimidine derivatives in dry media,” Ukrainica Bioorganica Acta, vol. 1, pp. 3–7, 2009. View at Google Scholar