Table of Contents
Journal of Nanoscience
Volume 2013, Article ID 167517, 7 pages
http://dx.doi.org/10.1155/2013/167517
Research Article

Charge Transport in 1-D Nanostructured CdS Dye Sensitized Solar Cell

1Department of Physics, Fatima College, Madurai 625014, India
2Department of Physics, Yadava College, Madurai 625014, India
3School of Physics, Madurai Kamaraj University, Madurai 625 021, India

Received 26 March 2013; Revised 21 August 2013; Accepted 22 August 2013

Academic Editor: Liqiang Jing

Copyright © 2013 M. Ragam et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. O'Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye sensitized colloidal TiO2 films,” Nature, vol. 353, no. 6346, pp. 737–740, 1991. View at Google Scholar · View at Scopus
  2. S. M. Reda and S. A. El-Sherbieny, “Dye-sensitized nanocrystalline CdS and ZnS solar cells with different organic dyes,” Journal of Materials Research, vol. 25, no. 3, pp. 522–528, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Kopidakis, E. A. Schiff, N.-G. Park, J. van de Lagemaat, and A. J. Frank, “Ambipolar diffusion of photocarriers in electrolyte-filled, nanoporous TiO2,” The Journal of Physical Chemistry B, vol. 104, no. 16, pp. 3930–3936, 2000. View at Google Scholar · View at Scopus
  4. E. Galoppini, J. Rochford, H. Chen et al., “Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells,” The Journal of Physical Chemistry B, vol. 110, no. 33, pp. 16139–16161, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Ranga Rao and V. Dutta, “Achievement of 4.7% conversion efficiency in ZnO dye-sensitized solar cells fabricated by spray deposition using hydrothermally synthesized nanoparticles,” Nanotechnology, vol. 19, no. 44, Article ID 445712, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. P. D. Yang, M. Law, L. E. Greene, J. C. Johnson, and R. Saykally, “Nanowire dye-sensitized solar cells,” Nature Materials, vol. 4, no. 6, pp. 455–459, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Kim, B. Fisher, H. J. Eisler, and M. Bawendi, “Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures,” Journal of the American Chemical Society, vol. 125, no. 38, pp. 11466–11467, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. K. S. Leschkies, R. Divakar, J. Basu et al., “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Letters, vol. 7, no. 6, pp. 1793–1798, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. J. Chi, H. G. Fu, L. H. Qi, K. Y. Shi, H. B. Zhang, and H. T. Yu, “Preparation of YSZ thin films for intermediate temperature solid oxide fuel cells by dip-coating,” Journal of Photochemistry and Photobiology A, vol. 357, pp. 195–199, 2008. View at Google Scholar
  10. D. Xu, Z. Liu, J. Liang, and Y. Qian, “Growth of copper sulfide ultrathin nanowires in a binary surfactant solvent,” The Journal of Physical Chemistry B, vol. 109, no. 21, pp. 10699–10704, 2005. View at Publisher · View at Google Scholar
  11. G. Katsaros, T. Stergiopoulos, I. M. Arabatzis, K. G. Papadokostaki, and P. Falaras, “A solvent-free composite polymer/inorganic oxide electrolyte for high efficiency solid-state dye-sensitized solar cells,” Journal of Photochemistry and Photobiology A, vol. 149, no. 1–3, pp. 191–198, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Xiao, Y. Li, and A. Jiang, “Structure, optical property and thermal stability of copper nitride films prepared by reactive radio frequency magnetron sputtering,” Journal of Materials Science & Technology, vol. 27, no. 5, pp. 403–407, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Vogel, P. Hoyer, and H. Weller, “Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-band gap semiconductors,” The Journal of Physical Chemistry, vol. 98, no. 12, pp. 3183–3188, 1994. View at Google Scholar · View at Scopus