Table of Contents
Journal of Nanoscience
Volume 2014 (2014), Article ID 173845, 6 pages
http://dx.doi.org/10.1155/2014/173845
Research Article

Microstructural and Electrochemical Properties of rf-Sputtered LiFeO2 Thin Films

Thin film Laboratory, Department of Physics, Sri Venkateswara University, Tirupati–517 502, India

Received 15 August 2013; Revised 21 December 2013; Accepted 7 February 2014; Published 13 March 2014

Academic Editor: Vincent Jousseaume

Copyright © 2014 P. Rosaiah and O. M. Hussain. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Li, Y. Huang, N. Sharma, Z. Chen, D. Jia, and Z. Guo, “Enhanced electrochemical properties of LiFePO4 by Mo-substitution and graphitic carbon-coating via a facile and fast microwave-assisted solid-state reaction,” Physical Chemistry and Chemical Physics, vol. 14, pp. 3634–3639, 2012. View at Publisher · View at Google Scholar
  2. J. Su, X.-L. Wu, C.-P. Yang, J.-S. Lee, J. Kim, and Y.-G. Guo, “Self-assembled LiFePO4/C nano/microspheres by using phytic acid as phosphorus source,” Journal of Physical Chemistry C, vol. 116, no. 8, pp. 5019–5024, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. K.-F. Chiu, C. C. Chen, P. Y. Chen, and W.-H. Ho, “Low temperature deposition of polycrystalline lithium transition metal oxide thin films for micro batteries,” Electrochemical Society Transactions, vol. 16, pp. 1–9, 2009. View at Google Scholar
  4. Y.-I. Jang, B. Huang, Y.-M. Chiang, and D. R. Sadoway, “Stabilization of LiMnO2 in the α-NaFeO2 structure type by LiAlO2 addition,” Electrochemical and Solid-State Letters, vol. 1, no. 1, pp. 13–16, 1998. View at Google Scholar · View at Scopus
  5. S. Tintignac, R. Baddour-Hadjean, J.-P. Pereira-Ramos, and R. Salot, “High performance sputtered LiCoO2 thin films obtained at a moderate annealing treatment combined to a bias effect,” Electrochimica Acta, vol. 60, pp. 121–129, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. X.-Z. Fu, X. Wang, H.-F. Peng et al., “Low temperature synthesis of LiNiO2@LiCoO2 as cathode materials for lithium ion batteries,” Journal of Solid State Electrochemistry, vol. 14, no. 6, pp. 1117–1124, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Ma, Y. Zhu, Y. Yu et al., “Low temperature synthesis of α-LiFeO2 nanoparticles and its behavior as cathode materials for Li-ion batteries,” International Journal of Electrochemical Science, vol. 7, pp. 4657–4662, 2012. View at Google Scholar
  8. H. Xia, L. Lu, Y. S. Meng, and G. Ceder, “Phase transitions and high-voltage electrochemical behavior of LiCoO2 thin films grown by pulsed laser deposition,” Journal of the Electrochemical Society, vol. 154, no. 4, pp. A337–A342, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Catti and M. Montero-Campillo, “First-principles modelling of lithium iron oxides as battery cathode materials,” Journal of Power Sources, vol. 196, no. 8, pp. 3955–3961, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Dupré, J.-F. Martin, J. Degryse, V. Fernandez, P. Soudan, and D. Guyomard, “Aging of the LiFePO4 positive electrode interface in electrolyte,” Journal of Power Sources, vol. 195, no. 21, pp. 7415–7425, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Shirane, R. Kanno, Y. Kawamoto et al., “Structure and physical properties of lithium iron oxide, LiFeO2, synthesized by ionic exchange reaction,” Solid State Ionics, vol. 79, pp. 227–233, 1995. View at Google Scholar · View at Scopus
  12. J. Li, J. Li, J. Luo, L. Wang, and X. He, “Recent advances in the LiFeO2-based materials for Li-ion batteries,” International Journal of Electrochemical Science, vol. 6, no. 5, pp. 1550–1561, 2011. View at Google Scholar · View at Scopus
  13. P. Rosaiah, P. Jeevan Kumar, K. Jayanth Babu, and O. M. Hussain, “Electrical and electrochemical properties of nano-crystalline LiFePO4 cathode,” Applied Physics A, vol. 113, pp. 603–611, 2013. View at Google Scholar
  14. A. Burukhin, O. Brylev, P. Hany, and B. R. Churagulov, “Hydrothermal synthesis of LiCoO2 for lithium rechargeable batteries,” Solid State Ionics, vol. 151, no. 1–4, pp. 259–263, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Gougousi, D. Barua, E. D. Young, and G. N. Parsons, “Metal oxide thin films deposited from metal organic precursors in supercritical CO2 solutions,” Chemistry of Materials, vol. 17, no. 20, pp. 5093–5100, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Jayanth Babu, P. Jeevan Kumar, and O. M. Hussain, “Growth, microstructure and electrochemical properties of RF sputtered LiMn2O4 thin films on Au/Polyimide flexible substrates,” Materials Sciences and Applications, vol. 4, pp. 128–133, 2013. View at Publisher · View at Google Scholar
  17. C. Wessells, F. La Mantia, H. Deshazer, R. A. Huggins, and Y. Cui, “Synthesis and electrochemical performance of a lithium titanium phosphate anode for aqueous lithium-ion batteries,” Journal of the Electrochemical Society, vol. 158, no. 3, pp. A352–A355, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Rosaiah and O. M. Hussain, “Synthesis, electrical and dielectrical properties of lithium iron oxide,” Advanced Materials Letters, vol. 4, pp. 288–295, 2013. View at Google Scholar
  19. Y. Bai, Y. Yin, J. Yang, C. Qing, and W. Zhang, “Raman study of pure, C-coated and Co-doped LiFePO4: thermal effect and phase stability upon laser heating,” Journal of Raman Spectroscopy, vol. 42, no. 4, pp. 831–838, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. A. E. Abdel-Ghany, A. Mauger, H. Groult, K. Zaghib, and C. M. Julien, “Structural properties and electrochemistry of α-LiFeO2,” Journal of Power Sources, vol. 197, pp. 285–291, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Jeevan-Kumar, K. Jayanth-Babu, O. M. Hussain, and C. M. Julien, “RF-sputtered LiCoO2 thick films: microstructure and electrochemical performance as cathodes in aqueous and nonaqueous microbatteries,” Ionics, vol. 19, pp. 421–428, 2013. View at Publisher · View at Google Scholar
  22. K. Jayanth-Babu, P. Jeevan-Kumar, O. M. Hussain, and C. M. Julien, “Influence of annealing temperature on Microstructural and electrochemical properties of rf-sputtered LiMn2O4 film cathodes,” Journal of Solid State Electrochemistry, vol. 16, pp. 3383–3390, 2012. View at Publisher · View at Google Scholar
  23. K. Tang, J. Sun, X. Yu, H. Li, and X. Huang, “Electrochemical performance of LiFePO4 thin films with different morphology and crystallinity,” Electrochimica Acta, vol. 54, no. 26, pp. 6565–6569, 2009. View at Publisher · View at Google Scholar · View at Scopus