Table of Contents
Journal of Nanoscience
Volume 2014, Article ID 404519, 7 pages
http://dx.doi.org/10.1155/2014/404519
Research Article

Modulation of Carbon Nanotube Metal Contacts in Gaseous Hydrogen Environment

1Electrical and Computer Engineering, University of British Columbia, 341-2355 East Mall, Vancouver, BC, Canada V6T 1Z4
2School of Electronics and Computer Science, University of Southampton, Highfield, Southampton SO17 1BJ, UK

Received 31 December 2013; Accepted 1 March 2014; Published 27 March 2014

Academic Editor: Oleg I. Lupan

Copyright © 2014 A. R. Usgaocar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. R. Buitelaar, A. Bachtold, T. Nussbaumer, M. Iqbal, and C. Schonenberger, “Multiwall carbon nanotubes as quantum dots,” Physical Review Letters, vol. 88, Article ID 156801, 2002. View at Google Scholar
  2. R. Hu, B. A. Cola, N. Haram et al., “Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell,” Nano letters, vol. 10, no. 3, pp. 838–846, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, “Ballistic carbon nanotube field-effect transistors,” Nature, vol. 424, no. 6949, pp. 654–657, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. X. Liang, S. Wang, X. Wei et al., “Towards entire-carbon-nanotube circuits: the fabrication of single-walled-carbon-nanotube field-effect transistors with local multiwalled-carbon-nanotube interconnects,” Advanced Materials, vol. 21, no. 13, pp. 1339–1343, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Cottet, T. Kontos, S. Sahoo et al., “Nanospintronics with carbon nanotubes,” Semiconductor Science and Technology, vol. 21, no. 11, article S11, pp. S78–S95, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. J. O. Hwang, J. S. Park, D. S. Choi et al., “N-doped reduced graphene transparent electrodes for high-performance polymer light-emitting diodes,” ACS Nano, vol. 6, no. 1, pp. 159–167, 2012. View at Publisher · View at Google Scholar
  7. H. Zhang, H. Song, X. Chen, J. Zhou, and H. Zhang, “Preparation and electrochemical performance of SnO2@carbon nanotube core-shell structure composites as anode material for lithium-ion batteries,” Electrochimica Acta, vol. 59, pp. 160–167, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Mecklenburg, A. Schuchardt, Y. K. Mishra et al., “Aerographite: ultra lightweight, flexible nanowall, carbon microtube material with outstanding mechanical performance,” Advanced Materials, vol. 24, pp. 3486–3490, 2012. View at Google Scholar
  9. P. Avouris, “Molecular electronics with carbon nanotubes,” Accounts of Chemical Research, vol. 35, no. 12, pp. 1026–1034, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. Chen, J. Appenzeller, J. Knoch, Y. m. Lin, and P. Avouris, “The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors,” Nano Letters, vol. 5, no. 7, pp. 1497–1502, 2005. View at Google Scholar
  11. Z. Zhang, X. Liang, S. Wang et al., “Doping-free fabrication of carbon nanotube based ballistic CMOS devices and circuits,” Nano Letters, vol. 7, no. 12, pp. 3603–3607, 2007. View at Publisher · View at Google Scholar
  12. M. S. Dresselhaus, A. Jorio, A. G. Souza Filho, G. Dresselhaus, and R. Saito, “Raman spectroscopy on one isolated carbon nanotube,” Physica B: Condensed Matter, vol. 323, no. 1–4, pp. 15–20, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Souza, A. Jorio, G. Dresselhaus et al., “Effect of quantized electronic states on the dispersive Raman features in individual single-wall carbon nanotubes,” Physical Review B—Condensed Matter and Materials Physics, vol. 65, no. 3, Article ID 035404, pp. 354041–354046, 2002. View at Google Scholar · View at Scopus
  14. R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and P. Avouris, “Single- and multi-wall carbon nanotube field-effect transistors,” Applied Physics Letters, vol. 73, no. 17, pp. 2447–2449, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, “Raman spectroscopy of carbon nanotubes,” Physics Reports, vol. 409, no. 2, pp. 47–99, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. A. R. Usgaocar and C. H. de Groot, “Electrodeposited PdNi as possible ferromagnetic contacts for carbon nanotubes,” Physica Status Solidi B: Basic Research, vol. 247, no. 4, pp. 888–891, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Mann, A. Javey, J. Kong, Q. Wang, and H. Dai, “Ballistic transport in metallic nanotubes with reliable pd ohmic contacts,” Nano Letters, vol. 3, no. 11, pp. 1541–1544, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Weichsel, O. Pagni, and A. W. R. Leitch, “Electrical and hydrogen sensing characteristics of Pd/ZnO Schottky diodes grown on GaAs,” Semiconductor Science and Technology, vol. 20, no. 8, pp. 840–843, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. T.-H. Chou, Y.-K. Fang, Y.-T. Chiang, C.-I. Lin, and K.-C. Lin, “Improving hydrogen detecting performance of a Pd/n-LTPS/glass thin film Schottky diode with a TiO2 interface layer,” Sensors and Actuators B: Chemical, vol. 134, no. 2, pp. 539–544, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. V. Derycke, R. Martel, J. Appenzeller, and P. Avouris, “Controlling doping and carrier injection in carbon nanotube transistors,” Applied Physics Letters, vol. 80, no. 15, pp. 2773–2775, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. E. H. Rhoderick, “metal-semiconductor contacts,” IEE Proceedings I: Solid State and Electron Devices, vol. 129, no. 1, pp. 1–14, 1982. View at Google Scholar · View at Scopus