Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanotechnology
Volume 2011 (2011), Article ID 106254, 15 pages
http://dx.doi.org/10.1155/2011/106254
Research Article

Photocatalytic Properties of Tin Oxide and Antimony-Doped Tin Oxide Nanoparticles

1Laboratory of Materials and Interface Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
2Laboratory of Polymer Technology, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
3Research and Development Kriya Materials Group, Kriya Materials B. V., P.O. Box 18, 6160 MD Geleen, The Netherlands

Received 8 March 2011; Accepted 12 April 2011

Academic Editor: Huisheng Peng

Copyright © 2011 J. C. M. Brokken-Zijp et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Mills and S. K. Lee, “A web-based overview of semiconductor photochemistry-based current commercial applications,” Journal of Photochemistry and Photobiology, vol. 152, no. 1–3, pp. 233–247, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Damm, “An acrylate polymerisation initiated by iron doped titanium dioxide,” Journal of Photochemistry and Photobiology, vol. 181, no. 2-3, pp. 297–305, 2006. View at Publisher · View at Google Scholar
  3. A. J. Hoffman, H. Yee, G. Mills, and M. R. Hoffmann, “Photoinitiated polymerization of methyl methacrylate using Q-sized ZnO colloids,” Journal of Physical Chemistry, vol. 96, no. 13, pp. 5540–5546, 1992. View at Google Scholar · View at Scopus
  4. R. Ojah and S. K. Dolui, “Photopolymerization of methyl methacrylate using dye-sensitized semiconductor based photocatalyst,” Journal of Photochemistry and Photobiology, vol. 172, no. 2, pp. 121–125, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. Encyclopedia of Polymer Science and Technology, vol. 10, 2004.
  6. F. E. Osterloh, “Inorganic materials as catalysts for photochemical splitting of water,” Chemistry of Materials, vol. 20, no. 1, pp. 35–54, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science, vol. 293, no. 5528, pp. 269–271, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. W. S. Tung and W. A. Daoud, “A new approach toward nanosized ferrous ferric oxide and iron-doped titanium dioxide photocatalysts,” Applied Materials & Interfaces, vol. 1, pp. 2453–2461, 2009. View at Google Scholar
  9. J. Zhu, W. Zheng, B. He, J. Zhang, and M. Anpo, “Characterization of Fe-TiO photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water,” Journal of Molecular Catalysis, vol. 216, no. 1, pp. 35–43, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. U. Gesenhues, “Al-doped TiO pigments: influence of doping on the photocatalytic degradation of alkyd resins,” Journal of Photochemistry and Photobiology, vol. 139, no. 2-3, pp. 243–251, 2001. View at Google Scholar · View at Scopus
  11. D. Wu, Y. Jiang, Y. Yuan, J. Wu, and K. Jiang, The Journal of Nanoparticle Research, vol. 13, no. 7, pp. 2875–2886, 2011.
  12. J. C. M. Brokken-Zijp, O. L. J. van Asselen, W. E. Kleinjan, R. van de Belt, and G. de With, “Photocatalysed (meth)acrylate polymerization by (antimony-doped) tin oxide nanoparticles and photoconduction of their crosslinked polymer nanoparticle composites,” Journal of Nanotechnology, vol. 2010, Article ID 579708, 16 pages, 2010. View at Publisher · View at Google Scholar
  13. W. E. Kleinjan, R. van de Belt, Z. Chen, and G. de With, “Antimony-doped tin oxide nanoparticles for conductive polymer nanocomposites,” Journal of Materials Research, vol. 23, no. 3, pp. 869–880, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. W. Posthumus, UV-Curable Acrylate Metal Oxide Nanocomposite Coatings, Ph.D. thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 2004.
  15. W. Posthumus, P. C. M. M. Magusin, J. C. M. Brokken-Zijp, A. H. A. Tinnemans, and R. Van Der Linde, “Surface modification of oxidic nanoparticles using 3-methacryloxypropyltrimethoxysilane,” Journal of Colloid and Interface Science, vol. 269, no. 1, pp. 109–116, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Batzill and U. Diebold, “The surface and materials science of tin oxide,” Progress in Surface Science, vol. 79, no. 2–4, pp. 47–154, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Shanthi, C. Subramanian, and P. Ramasamy, “Investigations on the optical properties of undoped, fluorine doped and antimony doped tin oxide films,” Crystal Research and Technology, vol. 34, no. 8, pp. 1037–1046, 1999. View at Google Scholar · View at Scopus
  18. D. Lin-Vien, N. B. Colthup, W. G. Fately, and J. C. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Academic Press, San Diego, Calif, USA, 1991.
  19. S. S. Pan, Y. D. Shen, X. M. Teng et al., “Substitutional nitrogen-doped tin oxide single crystalline submicrorod arrays: vertical growth, band gap tuning and visible light-driven photocatalysis,” Materials Research Bulletin, vol. 44, no. 11, pp. 2092–2098, 2009. View at Google Scholar
  20. S. S. Pan, Y. X Zhang, X. M. Teng, G. H. Li, and L. Li, “Optical properties of nitrogen-doped SnO2 films: effect of the electronegativity on refractive index and band gap,” Journal of Applied Physics, vol. 103, no. 9, Article ID 93103, 2008. View at Google Scholar
  21. L. J. Huijbregts, H. B. Brom, J. C. M. Brokken-Zijp, W. E. Kleinjan, and M. A. J. Michels, “Dielectric quantification of conductivity limitations due to nanofiller size in conductive powders and nanocomposites,” Physical Review, vol. 77, no. 7, Article ID 075322, 6 pages, 2008. View at Publisher · View at Google Scholar
  22. C. McGinley, H. Borchert, M. Pflughoefft et al., “Dopant atom distribution and spatial confinement of conduction electrons in Sb-doped SnO2 nanoparticles,” Physical Review, vol. 64, no. 24, Article ID 245312, 9 pages, 2001. View at Google Scholar
  23. T. Nütz, U. Z. Felde, and M. Haase, “Wet-chemical synthesis of doped nanoparticles: blue-colored colloids of n-doped SnO2:Sb,” Journal of Chemical Physics, vol. 110, no. 24, Article ID 12142, 9 pages, 1999. View at Publisher · View at Google Scholar
  24. U. Zum Felde, M. Haase, and H. Weller, “Electrochromism of highly doped nanocrystalline SnO2:Sb,” Journal of Physical Chemistry, vol. 104, no. 40, pp. 9388–9395, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. V. A. Soloukhin, J. C. M. Brokken-Zijp, and G. De With, “Conductive ATO-acrylate nanocomposite hybrid coatings: experimental results and modeling,” Journal of Polymer Science, vol. 45, no. 16, pp. 2147–2160, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. A. J. Hoffman, G. Mills, H. Yee, and M. R. Hoffmann, “Q-sized CdS: synthesis, characterization, and efficiency of photoinitiation of polymerization of several vinylic monomers,” Journal of Physical Chemistry, vol. 96, no. 13, pp. 5546–5552, 1992. View at Google Scholar · View at Scopus
  27. R. Mehnert, A. Pincus, I. Janorsky, R. Stowe, and A. Berejka, UV & EB Curing Technology and Equipment, vol. 1, John Wiley & Sons, Chichester, UK, 1998.
  28. G. R. Tryson and A. R. Shultz, “Calorimetric study of acrylate photopolymerization,” Journal of Polymer Science, vol. 17, no. 12, pp. 2059–2075, 1979. View at Google Scholar · View at Scopus
  29. J. Jansen, E. Houben, P. H. G. Tummers, D. Wienke, and J. Hoffmann, “Real-time infrared determination of photoinitiated copolymerization reactivity ratios: application of the Hilbert transform and critical evaluation of data analysis techniques,” Macromolecules, vol. 37, no. 6, pp. 2275–2286, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. C. S. Rastomjee, R. G. Egdell, M. J. Lee, and T. J. Tate, “Observation of conduction electrons in Sb-implanted SnO2 by ultraviolet photoemission spectroscopy,” Surface Science, vol. 259, no. 3, pp. L769–L773, 1991. View at Google Scholar · View at Scopus
  31. F. Gu, S. F. Wang, M. K. Lü, G. J. Zhou, D. Xu, and D. R. Yuan, “Photoluminescence properties of SnO2 nanoparticles synthesized by sol-gel method,” Journal of Physical Chemistry, vol. 108, no. 24, pp. 8119–8123, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. X. Sun, R. Long, X. Cheng, X. Zhao, Y. Dai, and B. Huang, “Structural, electronic, and optical properties of N-doped SnO2,” Journal of Physical Chemistry, vol. 112, no. 26, pp. 9861–9864, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. K. C. Mishra, K. H. Johnson, and P. C. Schmidt, “Electronic structure of antimony-doped tin oxide,” Physical Review, vol. 51, no. 20, pp. 13972–13976, 1995. View at Publisher · View at Google Scholar · View at Scopus
  34. C. G. Fonstadt and R. H. Redicker, “Electrical properties of high quality stannic oxide crystals,” Journal of Applied Physics, vol. 42, no. 7, p. 2911, 1971. View at Google Scholar