Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanotechnology
Volume 2011 (2011), Article ID 572329, 10 pages
http://dx.doi.org/10.1155/2011/572329
Research Article

Variation of the Side Chain Branch Position Leads to Vastly Improved Molecular Weight and OPV Performance in 4,8-dialkoxybenzo[1,2-b:4,5-b′]dithiophene/2,1,3-benzothiadiazole Copolymers

1The Department of Physics and the Center for Nanotechnology and Molecular Materials, Wake Forest University, Winston-Salem, NC 27109, USA
2The Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA

Received 2 February 2011; Accepted 13 April 2011

Academic Editor: Román López-Sandoval

Copyright © 2011 Robert C. Coffin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Cai, X. Gong, and Y. Cao, “Polymer solar cells: recent development and possible routes for improvement in the performance,” Solar Energy Materials and Solar Cells, vol. 94, no. 2, pp. 114–127, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Günes, H. Neugebauer, and N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chemical Reviews, vol. 107, no. 4, pp. 1324–1338, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. B. C. Thompson and J. M. J. Fréchet, “Polymer-fullerene composite solar cells,” Angewandte Chemie, vol. 47, no. 1, pp. 58–77, 2008. View at Publisher · View at Google Scholar
  4. L. Li, G. Lu, X. Yang, and E. Zhou, “Progress in polymer solar cell,” Chinese Science Bulletin, vol. 52, no. 2, pp. 145–158, 2007. View at Publisher · View at Google Scholar
  5. K. M. Coakley and M. D. McGehee, “Conjugated polymer photovoltaic cells,” Chemistry of Materials, vol. 16, no. 23, pp. 4533–4542, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Y. Kim, K. Lee, N. E. Coates et al., “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science, vol. 317, no. 5835, pp. 222–225, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. Press Release, 2010, http://www.konarka.com/.
  8. J. K. Lee, W. L. Ma, C. J. Brabec et al., “Processing additives for improved efficiency from bulk heterojunction solar cells,” Journal of the American Chemical Society, vol. 130, no. 11, pp. 3619–3623, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Peet, C. Soci, R. C. Coffin et al., “Method for increasing the photoconductive response in conjugated polymer/fullerene composites,” Applied Physics Letters, vol. 89, no. 25, Article ID 252105, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, and J. R. Durrant, “Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene,” Applied Physics Letters, vol. 86, no. 6, Article ID 063502, pp. 1–3, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Peet, J. Y. Kim, N. E. Coates et al., “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nature Materials, vol. 6, no. 7, pp. 497–500, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Padinger, R. S. Rittberger, and N. S. Sariciftci, “Effects of postproduction treatment on plastic solar cells,” Advanced Functional Materials, vol. 13, no. 1, pp. 85–88, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Campoy-Quiles, T. Ferenczi, T. Agostinelli et al., “Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends,” Nature Materials, vol. 7, no. 2, pp. 158–164, 2008. View at Publisher · View at Google Scholar
  14. J. S. Moon, C. J. Takacs, S. Cho et al., “Effect of processing additive on the nanomorphology of a bulk heterojunction material,” Nano Letters, vol. 10, no. 10, pp. 4005–4008, 2010. View at Publisher · View at Google Scholar
  15. M. Lenes, G. J. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, J. C. Hummelen, and P. W. M. Blom, “Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells,” Advanced Materials, vol. 20, no. 11, pp. 2116–2119, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. He, H. Y. Chen, J. Hou, and Y. Li, “Indene–C bisadduct: a new acceptor for high-performance polymer solar cells,” Journal of the American Chemical Society, vol. 132, no. 4, pp. 1377–1382, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. J. Cheng, S. H. Yang, and C. S. Hsu, “Synthesis of conjugated polymers for organic solar cell applications,” Chemical Reviews, vol. 109, no. 11, pp. 5868–5923, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Hou, M. H. Park, S. Zhang et al., “Bandgap and molecular energy level control of conjugated polymer photovoltaic materials based on benzo[l,2-b:4,5-b]dithiophene,” Macromolecules, vol. 41, no. 16, pp. 6012–6018, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. R. C. Coffin, J. Peet, J. Rogers, and G. C. Bazan, “Streamlined microwave-assisted preparation of narrow-bandgap conjugated polymers for high-performance bulk heterojunction solar cells,” Nature Chemistry, vol. 1, no. 8, pp. 657–661, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Liang, D. Feng, Y. Wu et al., “Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties,” Journal of the American Chemical Society, vol. 131, no. 22, pp. 7792–7799, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Hou, H. Y. Chen, S. Zhang et al., “Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells,” Journal of the American Chemical Society, vol. 131, no. 43, pp. 15586–15587, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Zhou, L. Yang, S. C. Price, K. J. Knight, and W. You, “Enhanced photovoltaic performance of low-bandgap polymers with deep LUMO levels,” Angewandte Chemie, vol. 49, no. 43, pp. 7992–7995, 2010. View at Publisher · View at Google Scholar
  23. C. Piliego, T. W. Holcombe, J. D. Douglas, C. H. Woo, P. M. Beaujuge, and J. M. J. Fréchet, “Synthetic control of structural order in N-alkylthieno[3,4- c]pyrrole-4,6-dione-based polymers for efficient solar cells,” Journal of the American Chemical Society, vol. 132, no. 22, pp. 7595–7597, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Liang, Z. Xu, J. Xia et al., “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Advanced Materials, vol. 22, no. 20, pp. E135–E138, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. H.-Y. Chen, J. Hou, S. Zhang et al., “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nature Photonics, vol. 3, no. 11, pp. 649–653, 2009. View at Publisher · View at Google Scholar
  26. Y. Zou, A. Najari, P. Berrouard et al., “A thieno[3,4- c ]pyrrole-4,6-dione-based copolymer for efficient solar cells,” Journal of the American Chemical Society, vol. 132, no. 15, pp. 5330–5331, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Pilgram, M. Zupan, and R. Skiles, “Bromination of 2,1,3-benzothiadiazoles,” Journal of Heterocyclic Chemistry, vol. 7, p. 629, 1970. View at Google Scholar
  28. GADDS V4.1.14, General Area Detector Diffraction System Program for Instrument Control and Data Collection, BRUKER AXS Inc., Madison, Wis, USA.
  29. EVA V8.0, Graphics Program for 2-Dimensional Data Evaluation and Presentation, BRUKER AXS Inc., Madison, Wis, USA.
  30. F. Galbrecht, T. W. Bünnagel, U. Scherf, and T. Farrell, “Microwave-assisted preparation of semiconducting polymers,” Macromolecular Rapid Communications, vol. 28, no. 4, pp. 387–394, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. B. S. Nehls, U. Asawapirom, S. Füldner, E. Preis, T. Farrell, and U. Scherf, “Semiconducting polymers via microwave-assisted Suzuki and Stille cross-coupling reactions,” Advanced Functional Materials, vol. 14, no. 4, pp. 352–356, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. K. R. Carter, “Nickel(0)-mediated coupling polymerizations via microwave-assisted chemistry,” Macromolecules, vol. 35, no. 18, pp. 6757–6759, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Peet, N. S. Cho, S. K. Lee, and G. C. Bazan, “Transition from solution to the solid state in polymer solar cells cast from mixed solvents,” Macromolecules, vol. 41, no. 22, pp. 8655–8659, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. R. F. Cossiell , L. Akcelrud, and D. Z. Atvars, “Solvent and Molecular Weight Effects on Fluorescence Emission of MEH-PPV,” Journal of Brazilian Chemical Society, vol. 16, p. 74, 2005. View at Google Scholar
  35. R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, J. M. J. Fréchet, and M. F. Toney, “Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight,” Macromolecules, vol. 38, no. 8, pp. 3312–3319, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Yamamoto, Q. Fang, and T. Morikita, “New soluble poly(aryleneethynylene)s consisting of electron-accepting benzothiadiazole units and electron-donating dialkoxybenzene units. Synthesis, molecular assembly, orientation on substrates, and electrochemical and optical properties,” Macromolecules, vol. 36, no. 12, pp. 4262–4267, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Yamamoto, D. Komarudin, M. Arai et al., “Extensive studies on π-stacking of poly(3-alkylthiophene-2,5-diyl)s and poly(4-alkylthiazole-2,5-diyl)s by optical spectroscopy, NMR analysis, light scattering analysis, and X-ray crystallography,” Journal of the American Chemical Society, vol. 120, no. 9, pp. 2047–2058, 1998. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Watanabe, B. R. Harkness, M. Sone, and H. Ichimura, “Rigid-rod polyesters with flexible side chains. 4. Thermotropic behavior and phase structures in polyesters based on 1,4-dialkyl esters of pyromellitic acid and 4,4-biphenol,” Macromolecules, vol. 27, no. 2, pp. 507–512, 1994. View at Google Scholar · View at Scopus