Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanotechnology
Volume 2011, Article ID 651971, 6 pages
http://dx.doi.org/10.1155/2011/651971
Research Article

An Organic Acid-induced Synthesis and Characterization of Selenium Nanoparticles

Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India

Received 30 March 2011; Accepted 26 May 2011

Academic Editor: Mallikarjuna Nadagouda

Copyright © 2011 Charu Dwivedi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Wang and N. Herron, “Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties,” Journal of Physical Chemistry, vol. 95, no. 2, pp. 525–532, 1991. View at Google Scholar · View at Scopus
  2. M. Haase, H. Weller, and A. Henglein, “Photochemistry of colloidal semiconductors. 26. Photoelectron emission from CdS particles and related chemical effects,” Journal of Physical Chemistry, vol. 92, no. 16, pp. 4706–4712, 1988. View at Google Scholar · View at Scopus
  3. R. Rossetti and L. E. Brus, “Picosecond resonance Raman scattering study of methylviologen reduction on the surface of photoexcited colloidal CdS crystallites,” Journal of Physical Chemistry, vol. 90, no. 4, pp. 558–560, 1986. View at Google Scholar · View at Scopus
  4. S. Li, Y. Shen, A. Xie et al., “Rapid, room-temperature synthesis of amorphous selenium/protein composites using Capsicum annuum L extract,” Nanotechnology, vol. 18, no. 40, Article ID 405101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Cao, Y. Xie, S. Zhang, and F. Li, “Ultra-thin trigonal selenium nanoribbons developed from series-wound beads,” Advanced Materials, vol. 16, no. 7, pp. 649–578, 2004. View at Google Scholar · View at Scopus
  6. P. Cherin and P. Unger, “The crystal structure of trigonal selenium,” Inorganic Chemistry, vol. 6, no. 8, pp. 1589–1591, 1967. View at Google Scholar · View at Scopus
  7. P. Ungar and P. Cherin, in The Physics of Selenium and Tellurium, W. C. Cooper, Ed., p. 223, Pergamon, Oxford, UK, 1969.
  8. P. Cherin and P. Ungar, “Refinement of crystal structure of α-monoclinic Se,” Acta Crystallographica, vol. 28, pp. 313–317, 1972. View at Google Scholar
  9. H. Yin, Z. Xu, H. Bao, J. Bai, and Y. Zheng, “Single crystal trigonal selenium nanoplates converted from selenium nanoparticles,” Chemistry Letters, vol. 34, no. 1, pp. 122–123, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Xu, F. Yang, L. Chen, Y. Hu, and Q. Hu, “Effect of selenium on increasing the antioxidant activity of tea leaves harvested during the early spring tea producing season,” Journal of Agricultural and Food Chemistry, vol. 51, no. 4, pp. 1081–1084, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Zhang, X. Ye, W. Dai, W. Hou, F. Zuo, and Y. Xie, “Biomolecule-assisted synthesis of single-crystalline selenium nanowires and nanoribbons via a novel flake-cracking mechanism,” Nanotechnology, vol. 17, no. 2, pp. 385–390, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Liu, Y. Ma, W. Cai et al., “Photoconductivity of single-crystalline selenium nanotubes,” Nanotechnology, vol. 18, no. 20, Article ID 205704, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. Q. Li and V. W. W. Yam, “High-yield synthesis of selenium nanowires in water at room temperature,” Chemical Communications, no. 9, pp. 1006–1008, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Zhu, Y. Qian, H. Huang, and M. Zhang, “Preparation of nanometer-size selenium powders of uniform particle size by γ-irradiation,” Materials Letters, vol. 28, no. 1–3, pp. 119–122, 1996. View at Google Scholar · View at Scopus
  15. R. S. Oremland, M. J. Herbel, J. S. Blum et al., “Structural and Spectral Features of Selenium Nanospheres Produced by Se-Respiring Bacteria,” Applied and Environmental Microbiology, vol. 70, no. 1, pp. 52–60, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Mishra, P. A. Hassan, K. I. Priyadarsini, and H. Mohan, “Reactions of biological oxidants with selenourea: formation of redox active nanoselenium,” Journal of Physical Chemistry B, vol. 109, no. 26, pp. 12718–12723, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. T. C. Franklin, W. K. Adeniyi, and R. Nnodimele, “Electro-oxidation of some insoluble inorganic sulfides, selenides, and tellurides in cationic surfactant-aqueous sodium hydroxide systems,” Journal of the Electrochemical Society, vol. 137, no. 2, pp. 480–484, 1990. View at Google Scholar · View at Scopus
  18. C. P. Shah, M. Kumar, K. K. Pushpa, and P. N. Bajaj, “Acrylonitrile-induced synthesis of polyvinyl alcohol-stabilized selenium nanoparticles,” Crystal Growth and Design, vol. 8, no. 11, pp. 4159–4164, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Gorer and G. Hodes, “Quantum size effects in the study of chemical solution deposition mechanisms of semiconductor films,” Journal of Physical Chemistry, vol. 98, no. 20, pp. 5338–5346, 1994. View at Google Scholar · View at Scopus
  20. Z. H. Lin and C. R. C. Wang, “Evidence on the size-dependent absorption spectral evolution of selenium nanoparticles,” Materials Chemistry and Physics, vol. 92, no. 2-3, pp. 591–594, 2005. View at Publisher · View at Google Scholar · View at Scopus