Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanotechnology
Volume 2012, Article ID 101243, 6 pages
Research Article

Raman Laser Polymerization of C60 Nanowhiskers

National Institute for Materials Science, Fullerene Engineering Group, 1-1, Namiki, Ibaraki, Tsukuba 305-0044, Japan

Received 14 July 2011; Revised 25 December 2011; Accepted 4 January 2012

Academic Editor: Junfeng Geng

Copyright © 2012 Ryoei Kato and Kun'ichi Miyazawa. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Photopolymerization of C60 nanowhiskers (C60NWs) was investigated by using a Raman spectrometer in air at room temperature, since the polymerized C60NWs are expected to exhibit a high mechanical strength and a thermal stability. Short C60NWs with a mean length of 4.4 μm were synthesized by LLIP method (liquid-liquid interfacial precipitation method). The Ag(2) peak of C60NWs shifted to the lower wavenumbers with increasing the laser beam energy dose, and an energy dose more than about 1520 J/mm2 was found necessary to obtain the photopolymerized C60NWs. However, excessive energy doses at high-power densities increased the sample temperature and lead to the thermal decomposition of polymerized C60 molecules.