Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanotechnology
Volume 2012, Article ID 167128, 6 pages
Research Article

Henna (Lawsonia inermis L.) Dye-Sensitized Nanocrystalline Titania Solar Cell

1Department of Physics, College of Science, University of Bahrain, P.O. Box 32038, Bahrain
2College of Graduate Studies and Research, Ahlia University, P.O. Box 10878, Bahrain
3Department of Chemistry, University of Bahrain, P.O. Box 32038, Bahrain

Received 15 June 2011; Revised 21 October 2011; Accepted 24 October 2011

Academic Editor: Thomas Stergiopoulos

Copyright © 2012 Khalil Ebrahim Jasim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Low-cost solar cells have been the subject of intensive research activities for over half century ago. More recently, dye-sensitized solar cells (DSSCs) emerged as a new class of low-cost solar cells that can be easily prepared. Natural-dye-sensitized solar cells (NDSSCs) are shown to be excellent examples of mimicking photosynthesis. The NDSSC acts as a green energy generator in which dyes molecules adsorbed to nanocrystalline layer of wide bandgap semiconductor material harvest photons. In this paper we investigate the structural, optical, electrical, and photovoltaic characterization of two types of natural dyes, namely, the Bahraini Henna and the Yemeni Henna, extracted using the Soxhlet extractor. Solar cells from both materials were prepared and characterized. It was found that the levels of open-circuit voltage and short-circuit current are concentration dependent. Further suggestions to improve the efficiency of NDSSC are discussed.