Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanotechnology
Volume 2012, Article ID 195106, 6 pages
Research Article

The Effect of Solvents, Acetone, Water, and Ethanol, on the Morphological and Optical Properties of ZnO Nanoparticles Prepared by Microwave

1Department of Chemical Technology, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
2Department of Chemistry, Vaal University of Technology, Private Bag X021, Vanderbijlpark 1900, South Africa
3Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Private Bag X3015, Randburg, Johannesburg 2125, South Africa

Received 16 September 2011; Revised 25 November 2011; Accepted 30 November 2011

Academic Editor: Chuan Jian Zhong

Copyright © 2012 Phindile B. Khoza et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


HDA-capped ZnO nanoparticles were prepared by solvothermal method using solvents of different polarities. A number of parameters were kept constant such as temperature, pressure, time, and pH while solvents were varied, that is, water, ethanol, and acetone. The TEM was used for the structural properties and morphologies such as spheres, mixture of rods, and spheres and stars were obtained in ethanol, acetone, and water, respectively, in a given reaction time of 15 minutes. Both ethanol and acetone gave rods with high aspect ratio primarily because of the lengths of the rods. Water and ethanol have the hydroxyl groups which interact with nanoparticles from nucleation, growth, and termination giving rise to nonspherical shapes. The hydroxyl group promotes growth in a nonuniform way resulting in stars and rods. The optical features were typical of ZnO nanoparticles with excitonic peaks in the range 368 to 374 nm from their absorption spectra. The XRD patterns of the particles gave the most stable form of ZnO which is the hexagonal phase, with high degree of crystallinity and with the 101 plane predominant in all solvents.