Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanotechnology
Volume 2012, Article ID 513457, 5 pages
http://dx.doi.org/10.1155/2012/513457
Research Article

Thickness Effect on F8T2/C60 Bilayer Photovoltaic Devices

Grupo de Dispositivos Nanoestruturados, Departamento de Física, Universidade Federal do Paraná, 8153-990 Curitiba, PR, Brazil

Received 15 July 2011; Accepted 3 September 2011

Academic Editor: Kun'ichi Miyazawa

Copyright © 2012 Natasha A. D. Yamamoto et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Olle, Z. Fengling, and M. R. Andersson, “Alternating polyfluorenes collect solar light in polymer photovoltaics,” Accounts of Chemical Research, vol. 42, no. 11, pp. 1731–1739, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. L. Akcelrud, “Electroluminescent polymers,” Progress in Polymer Science, vol. 28, no. 6, pp. 875–962, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Zhao, D. Liu, L. Peng et al., “Effect of oxadiazole side chains based on alternating fluorene-thiophene copolymers for photovoltaic cells,” European Polymer Journal, vol. 45, no. 7, pp. 2079–2086, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. G. L. Schulz, X. Chen, and S. Holdcroft, “High band gap poly(9,9-dihexylfluorene-alt-bithiophene) blended with [6,6]-phenyl C61 butyric acid methyl ester for use in efficient photovoltaic devices,” Applied Physics Letters, vol. 94, no. 2, Article ID 023302, 2009. View at Publisher · View at Google Scholar
  5. J. H. Huang, C. Y. Yang, Z. Y. Ho et al., “Annealing effect of polymer bulk heterojunction solar cells based on polyfluorene and fullerene blend,” Organic Electronics: Physics, Materials, Applications, vol. 10, no. 1, pp. 27–33, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. J. H. Huang, K. C. Li, D. Kekuda et al., “Efficient bilayer polymer solar cells possessing planar mixed-heterojunction structures,” Journal of Materials Chemistry, vol. 20, no. 16, pp. 3295–3300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Kekuda, J. H. Huang, K. C. Ho, and C. W. Chu, “Modulation of donor-acceptor interface through thermal treatment for efficient bilayer organic solar cells,” Journal of Physical Chemistry C, vol. 114, no. 6, pp. 2764–2768, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. A. G. Macedo, C. F. N. Marchiori, I. R. Grova, L. Akcelrud, M. Koehler, and L. S. Roman, “Hole mobility effect in the efficiency of bilayer heterojunction polymer/C60 photovoltaic cells,” Applied Physics Letters, vol. 98, p. 253501, 2011. View at Google Scholar
  9. C. D. Canestraro, M. C. Schnitzler, A. J. G. Zarbin, M. G. E. da Luz, and L. S. Roman, “Carbon nanotubes based nanocomposites for photocurrent improvement,” Applied Surface Science, vol. 252, no. 15, pp. 5575–5578, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Valaski, C. D. Canestraro, L. Micaroni, R. M. Q. Mello, and L. S. Roman, “Organic photovoltaic devices based on polythiophene films electrodeposited on FTO substrates,” Solar Energy Materials and Solar Cells, vol. 91, no. 8, pp. 684–688, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. A. C. Arias, L. S. Roman, T. Kugler, R. Toniolo, M. S. Meruvia, and I. A. Hümmelgen, “Use of tin oxide thin films as a transparent electrode in PPV based light-emitting diodes,” Thin Solid Films, vol. 371, no. 1, pp. 201–206, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Sirringhaus, M. Bird, T. Richards, and N. Zhao, “Charge transport physics of conjugated polymer field-effect transistors,” Advanced Materials, vol. 22, no. 34, pp. 3893–3898, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. J. C. Hummelen, B. W. Knight, F. Lepeq, F. Wudl, J. Yao, and C. L. Wilkins, “Preparation and characterization of fulleroid and methanofullerene derivatives,” Journal of Organic Chemistry, vol. 60, no. 3, pp. 532–538, 1995. View at Google Scholar · View at Scopus
  14. S. A. Backer, K. Sivula, D. F. Kavulak, and J. M. J. Fréchet, “High efficiency organic photovoltaics incorporating a new family of soluble fullerene derivatives,” Chemistry of Materials, vol. 19, no. 12, pp. 2927–2929, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Zhao, Y. He, Z. Xu et al., “Effect of carbon chain length in the substituent of PCBM-like molecules on their photovoltaic properties,” Advanced Functional Materials, vol. 20, no. 9, pp. 1480–1487, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. L. S. Roman, R. Valaski, C. D. Canestraro et al., “Optical band-edge absorption of oxide compound SnO2,” Applied Surface Science, vol. 252, no. 15, pp. 5361–5364, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. P. R. F. Barnes, A. Y. Anderson, S. E. Koops, J. R. Durrant, and B. C. O'Regan, “Electron injection efficiency and diffusion length in dye-sensitized solar cells derived from incident photon conversion efficiency measurements,” Journal of Physical Chemistry C, vol. 113, no. 3, pp. 1126–1136, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. J. H. Huang, C. P. Lee, Z. Y. Ho, D. Kekuda, C. W. Chu, and K. C. Ho, “Enhanced spectral response in polymer bulk heterojunction solar cells by using active materials with complementary spectra,” Solar Energy Materials and Solar Cells, vol. 94, no. 1, pp. 22–28, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Koehler, L. S. Roman, O. Inganäs, and M. G. E. Da Luz, “Modeling bilayer polymer/fullerene photovoltaic devices,” Journal of Applied Physics, vol. 96, no. 1, pp. 40–43, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. L. S. Roman, W. Mammo, L. A. A. Pettersson, M. R. Andersson, and O. Inganäs, “High quantum efficiency polythiophene/C60 photodiodes,” Advanced Materials, vol. 10, no. 10, pp. 774–777, 1998. View at Google Scholar · View at Scopus
  21. L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” Journal of Applied Physics, vol. 86, no. 1, pp. 487–496, 1999. View at Google Scholar · View at Scopus
  22. G. Kunz and A. Wagner, “Internal series resistance determinated of only one I-V curve under illumination,” in Proceedings of the 19th European Photovoltaic Solar Energy Conference, p. 5BV.2.70, 2004.
  23. M. Koehler, L. S. Roman, O. Inganäs, and M. G. E. Da Luz, “Space-charge-limited bipolar currents in polymer/C60 diodes,” Journal of Applied Physics, vol. 92, no. 9, pp. 5575–5577, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. G. G. Malliaras, J. R. Salem, P. J. Brock, and C. Scott, “Electrical characteristics and efficiency of single-layer organic light-emitting diodes,” Physical Review B, vol. 58, no. 20, pp. R13411–R13414, 1998. View at Google Scholar · View at Scopus
  25. G. G. Malliaras, J. R. Salem, P. J. Brock, and J. C. Scott, “Photovoltaic measurement of the built-in potential in organic light emitting diodes and photodiodes,” Journal of Applied Physics, vol. 84, no. 3, pp. 1583–1587, 1998. View at Google Scholar · View at Scopus
  26. P. N. Murgatroyd, “Theory of space-charge-limited current enhanced by Frenkel effect,” Journal of Physics D, vol. 3, no. 2, article 308, pp. 151–156, 1970. View at Publisher · View at Google Scholar · View at Scopus