Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanotechnology
Volume 2012, Article ID 709031, 6 pages
http://dx.doi.org/10.1155/2012/709031
Research Article

Interconnected TiO2 Nanowire Networks for PbS Quantum Dot Solar Cell Applications

1Department of Electrical and Computer Engineering, University of Delaware, 140 Evans Hall, Newark, DE 19716, USA
2Département de Génie Électrique, École de Technologie Supérieure, 1100 rue Notre-Dame Ouest, Montréal, QC, Canada H3C 1K3

Received 21 November 2011; Revised 7 February 2012; Accepted 15 February 2012

Academic Editor: Sharad D. Bhagat

Copyright © 2012 Fan Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse et al., “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano, vol. 4, no. 6, pp. 3374–3380, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. J. M. Luther, J. Gao, M. T. Lloyd, O. E. Semonin, M. C. Beard, and A. J. Nozik, “Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell,” Advanced Materials, vol. 22, no. 33, pp. 3704–3707, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. J. J. Choi, Y. F. Lim, M. B. Santiago-Berrios et al., “PbSe Nanocrystal Excitonic Solar Cells,” Nano Letters, vol. 9, no. 11, pp. 3749–3755, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Ju, R. L. Graham, G. Zhai et al., “High efficiency mesoporous titanium oxide PbS quantum dot solar cells at low temperature,” Applied Physics Letters, vol. 97, no. 4, Article ID 043106, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. M. Luther, M. Law, M. C. Beard et al., “Schottky solar cells based on colloidal nanocrystal films,” Nano Letters, vol. 8, no. 10, pp. 3488–3492, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Tang, L. Brzozowski, D. A. R. Barkhouse et al., “Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability,” ACS Nano, vol. 4, no. 2, pp. 869–878, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. W. Ma, J. M. Luther, H. Zheng, Y. Wu, and A. P. Alivisatos, “Photovoltaic devices employing ternary PbSxSe1-x nanocrystals,” Nano Letters, vol. 9, no. 4, pp. 1699–1703, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Van De Lagemaat, N. G. Park, and A. J. Frank, “Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline Tio2 solar cells: a study by electrical impedance and optical modulation techniques,” Journal of Physical Chemistry B, vol. 104, no. 9, pp. 2044–2052, 2000. View at Google Scholar · View at Scopus
  9. N. Kopidakis, K. D. Benkstein, J. Van De Lagemaat, and A. J. Frank, “Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline Tio2 solar cells,” Journal of Physical Chemistry B, vol. 107, no. 41, pp. 11307–11315, 2003. View at Google Scholar · View at Scopus
  10. B. Liu and E. S. Aydil, “Growth of oriented single-crystalline rutile Tio2 nanorods on transparent conducting substrates for dye-sensitized solar cells,” Journal of the American Chemical Society, vol. 131, no. 11, pp. 3985–3990, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented Tio2 nanotubes arrays,” Nano Letters, vol. 7, no. 1, pp. 69–74, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Guchgait, A. K. Rath, and A. J. Pal, “Near-IR activity of hybrid solar cells: enhancement of efficiency by dissociating excitons generated in PbS nanoparticels,” Applied Physics Letters, vol. 9, no. 7, article 073505, 3 pages, 2010. View at Google Scholar
  13. N. Barati, M. A. F. Sani, H. Ghasemi, Z. Sadeghian, and S. M. M. Mirhoseini, “Preparation of uniform Tio2 nanostructure film on 316L stainless steel by sol-gel dip coating,” Applied Surface Science, vol. 255, no. 20, pp. 8328–8333, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Joo, S. G. Kwon, T. Yu et al., “Large-scale synthesis of Tio2 nanorods via nonhydrolytic sol-gel ester elimination reaction and their application to photocatalytic inactivation of E. coli,” Journal of Physical Chemistry B, vol. 109, no. 32, pp. 15297–15302, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. M. A. Hines and G. D. Scholes, “Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution,” Advanced Materials, vol. 15, no. 21, pp. 1844–1849, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. J. M. Luther, M. Law, Q. Song, C. L. Perkins, M. C. Beard, and A. J. Nozik, “Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol,” ACS Nano, vol. 2, no. 2, pp. 271–280, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Mukherjee, B. Viswanath, and N. Ravishankar, “Functional nanoporous structures by partial sintering of nanorod assemblies,” Journal of Physics D, vol. 43, no. 45, Article ID 455301, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. B. R. Hyun, Y. W. Zhong, A. C. Bartnik et al., “Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles,” ACS Nano, vol. 2, no. 11, pp. 2206–2212, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. B. -R. Hyun, A. C. Bartnik, L. Sun, T. Hanrath, and F. W. Wise, “Control of electron transfer from lead-salt nanocrystals to TiO2,” Nano Letters, vol. 11, no. 5, pp. 2126–2132, 2011. View at Publisher · View at Google Scholar
  20. I. Robel, V. Subramanian, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic Tio2 films,” Journal of the American Chemical Society, vol. 128, no. 7, pp. 2385–2393, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. W. A. Tisdale, K. J. Williams, B. A. Timp, D. J. Norris, E. S. Aydil, and X. Y. Zhu, “Hot-electron transfer from semiconductor nanocrystals,” Science, vol. 328, no. 5985, pp. 1543–1547, 2010. View at Publisher · View at Google Scholar · View at Scopus