Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanotechnology
Volume 2014, Article ID 285857, 7 pages
http://dx.doi.org/10.1155/2014/285857
Research Article

Noncovalent Attachment of PbS Quantum Dots to Single- and Multiwalled Carbon Nanotubes

1Department of Chemistry, University of Idaho, Renfrew Hall, Moscow, ID 83844, USA
2Center for Catalysis and Surface Science, Northwestern University, 2137 Tech Drive, Evanston, IL 60208-3000, USA

Received 8 June 2013; Revised 31 January 2014; Accepted 1 February 2014; Published 10 March 2014

Academic Editor: Bobby G. Sumpter

Copyright © 2014 Anirban Das et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. I. Klimov, “Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals: implications for lasing and solar energy conversion,” Journal of Physical Chemistry B, vol. 110, no. 34, pp. 16827–16845, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. C. L. Amiot, S. Xu, S. Liang, L. Pan, and J. X. Zhao, “Near-infrared fluorescent materials for sensing of biological targets,” Sensors, vol. 8, no. 5, pp. 3082–3105, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. S. A. Mcdonald, G. Konstantatos, S. Zhang et al., “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nature Materials, vol. 4, no. 2, pp. 138–142, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. J. J. Peterson and T. D. Krauss, “Fluorescence spectroscopy of single lead sulfide quantum dots,” Nano Letters, vol. 6, no. 3, pp. 510–514, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. P. V. Kamat, “Quantum dot solar cells. Semiconductor nanocrystals as light harvesters,” Journal of Physical Chemistry C, vol. 112, no. 48, pp. 18737–18753, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. C.-T. Yuan, Y.-G. Wang, K.-Y. Huang et al., “Single-particle studies of band alignment effects on electron transfer dynamics from semiconductor hetero-nanostructures to single-walled carbon nanotubes,” ACS Nano, vol. 6, no. 1, pp. 176–182, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Y. Jeong, S. C. Lim, D. J. Bae et al., “Photocurrent of CdSe nanocrystals on single-walled carbon nanotube-field effect transistor,” Applied Physics Letters, vol. 92, no. 24, Article ID 243103, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. B. J. Landi, S. L. Castro, H. J. Ruf, C. M. Evans, S. G. Bailey, and R. P. Raffaelle, “CdSe quantum dot-single wall carbon nanotube complexes for polymeric solar cells,” Solar Energy Materials and Solar Cells, vol. 87, no. 1–4, pp. 733–746, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. H.-C. Huang, S. Barua, G. Sharma, S. K. Dey, and K. Rege, “Inorganic nanoparticles for cancer imaging and therapy,” Journal of Controlled Release, vol. 155, no. 3, pp. 344–357, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. G. E. Fernandes, Z. Liu, J. H. Kim, C.-H. Hsu, M. B. Tzolov, and J. Xu, “Quantum dot/carbon nanotube/silicon double heterojunctions for multi-band room temperature infrared detection,” Nanotechnology, vol. 21, no. 46, Article ID 465204, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. G. E. Fernandes, M. B. Tzolov, J. H. Kim, Z. Liu, and J. Xu, “Infrared photoresponses from PbS filled multiwall carbon nanotubes,” Journal of Physical Chemistry C, vol. 114, no. 51, pp. 22703–22709, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Dutta, S. Jana, and D. Basak, “Quenching of photoluminescence in Zno QDs decorating multiwalled carbon nanotubes,” ChemPhysChem, vol. 11, no. 8, pp. 1774–1779, 2010. View at Google Scholar · View at Scopus
  13. D. Wang, J. K. Baral, H. Zhao et al., “Controlled fabrication of pbs quantum-dot/carbon-nanotube nanoarchitecture and its significant contribution to near-infrared photon-to-current conversion,” Advanced Functional Materials, vol. 21, no. 21, pp. 4010–4018, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. A. L. Rogach, T. A. Klar, J. M. Lupton, A. Meijerink, and J. Feldmann, “Energy transfer with semiconductor nanocrystals,” Journal of Materials Chemistry, vol. 19, no. 9, pp. 1208–1221, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. Q. Li, B. Sun, I. A. Kinloch, D. Zhi, H. Sirringhaus, and A. H. Windle, “Enhanced self-assembly of pyridine-capped CdSe nanocrystals on individual single-walled carbon nanotubes,” Chemistry of Materials, vol. 18, no. 1, pp. 164–168, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Yu, Y. Chen, B. Li, X. Chen, and M. Zhang, “Fabrication and characterization of PbS/multiwalled carbon nanotube heterostructures,” Applied Physics Letters, vol. 90, no. 16, Article ID 161103, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Pan, D. Cui, R. He, F. Gao, and Y. Zhang, “Covalent attachment of quantum dot on carbon nanotubes,” Chemical Physics Letters, vol. 417, no. 4-6, pp. 419–424, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Engtrakul, Y.-H. Kim, J. M. Nedeljković et al., “Self-assembly of linear arrays of semiconductor nanoparticles on carbon single-walled nanotubes,” Journal of Physical Chemistry B, vol. 110, no. 50, pp. 25153–25157, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. B. J. Landi, C. M. Evans, J. J. Worman, S. L. Castro, S. G. Bailey, and R. P. Raffaelle, “Noncovalent attachment of CdSe quantum dots to single wall carbon nanotubes,” Materials Letters, vol. 60, no. 29-30, pp. 3502–3506, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Schulz-Drost, V. Sgobba, C. Gerhards et al., “Innovative inorganic-organic nanohybrid materials: coupling quantum dots to carbon nanotubes,” Angewandte Chemie International Edition, vol. 49, no. 36, pp. 6425–6429, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. B. H. Juárez, C. Klinke, A. Kornowski, and H. Weller, “Quantum dot attachment and morphology control by carbon nanotubes,” Nano Letters, vol. 7, no. 12, pp. 3564–3568, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Pan, D. Cui, C. S. Ozkan et al., “Effects of carbon nanotubes on photoluminescence properties of quantum dots,” Journal of Physical Chemistry C, vol. 112, no. 4, pp. 939–944, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Loscutova and A. R. Barron, “Coating single-walled carbon nanotubes with cadmium chalcogenides,” Journal of Materials Chemistry, vol. 15, no. 40, pp. 4346–4353, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. J. M. Haremza, M. A. Hahn, T. D. Krauss, S. Chen, and J. Calcines, “Attachment of single CdSe nanocrystals to individual single-walled carbon nanotubes,” Nano Letters, vol. 2, no. 11, pp. 1253–1258, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Jana, D. Banerjee, A. Jha, and K. K. Chattopadhyay, “Fabrication of PbS nanoparticle coated amorphous carbon nanotubes: structural, thermal and field emission properties,” Materials Research Bulletin, vol. 46, no. 10, pp. 1659–1664, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Das and C. M. Wai, “Ultrasound-assisted synthesis of PbS quantum dots stabilized by 1, 2-benzenedimethanethiol and attachment to single-walled carbon nanotubes,” Ultrasonics Sonochemistry, vol. 21, pp. 892–900, 2014. View at Publisher · View at Google Scholar
  27. V. Biju, T. Itoh, Y. Baba, and M. Ishikawa, “Quenching of photoluminescence in conjugates of quantum dots and single-walled carbon nanotube,” Journal of Physical Chemistry B, vol. 110, no. 51, pp. 26068–26074, 2006. View at Publisher · View at Google Scholar · View at Scopus