Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanotechnology
Volume 2014, Article ID 631248, 7 pages
Research Article

Evaluation of Cytotoxic Effects of Different Concentrations of Porous Hollow Au Nanoparticles (PHAuNPs) on Cells

1Department of Electrical Engineering, UT Arlington, 416 Yates Street, P.O. Box 19016, Arlington, TX 76019, USA
2Department of Materials Science and Engineering, UT Arlington, 501 West 1st Street, P.O. Box 19031, Arlington, TX 76019, USA
3Texas Academy of Math and Science, Denton, TX 76203, USA
4Lamar High School, Arlington, TX 76012, USA
5Arlington High School, Arlington, TX 76013, USA

Received 31 July 2013; Accepted 27 October 2013; Published 19 January 2014

Academic Editor: Paresh Chandra Ray

Copyright © 2014 Smitha Rao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Nanoparticles (NPs) have been introduced as a suitable alternative in many in vivo bioapplications. The risks of utilizing nanoparticles continue to be an ongoing research. Furthermore, the various chemicals used in their synthesis influence the cytotoxic effects of nanoparticles. We have investigated the cytotoxicity of Porous Hollow Au Nanoparticles (PHAuNPs) on cancer cell lines PC-3, PC-3ML, and MDA-MB-231 and the normal cell line PNT1A. Cell proliferation for the different cells in the presence of different concentrations of the PHAuNPs was assessed after 24 hours and 72 hours of incubation using MTT assay. The study also included the cytotoxic evaluation of pegylated PHAuNPs. Identical cell seeding densities, particle concentrations, and incubation times were employed for these two types of Au nanoparticles. Our results indicated that (1) impact on cell proliferation was concentration dependent and was different for the different cell types without cellular necrosis and (b) cellular proliferation might be impacted more based on the cell line.