Journal of Nanotechnology The latest articles from Hindawi © 2017 , Hindawi Limited . All rights reserved. Structural and Magnetic Properties of Nanopowders and Coatings of Carbon-Doped Zinc Oxide Prepared by Pulsed Electron Beam Evaporation Sun, 23 Apr 2017 00:00:00 +0000 With the help of electron beam evaporation of mechanical mixtures of nonmagnetic micron powders ZnO and carbon in vacuum with the subsequent annealing of evaporation products in air at the temperature of 773 K, single-phase crystal nanopowders ZnO-C were produced with the hexagonal wurtzite structure and low content of the carbon dopant not exceeding 0.25 wt%. It was established that doping ZnO with carbon stimulates primary growth of nanoparticles along the direction in the coatings. Nanocrystal growth in coatings occurs in the same way as crystal growth in thin films, with growth anisotropy in the -axis direction in wurtzite ZnO. Element mapping has confirmed homogeneous distribution of carbon in ZnO lattice. Ferromagnetism of single-phase crystal nanopowders ZnO-C with the hexagonal wurtzite structure and low content of the carbon dopant not exceeding 0.25 wt% was produced at room temperature. Ferromagnetic response of the doped NP ZnO-C has exceeded the ferromagnetic response of pure NP ZnO 5 times. The anhysteretic form of magnetization curves NP ZnO-C indicates aspiration of samples to superparamagnetism manifestation. V. G. Il’ves and S. Yu. Sokovnin Copyright © 2017 V. G. Il’ves and S. Yu. Sokovnin. All rights reserved. Properties of Nanostructure Bismuth Telluride Thin Films Using Thermal Evaporation Wed, 22 Mar 2017 08:02:32 +0000 Bismuth telluride has high thermoelectric performance at room temperature; in present work, various nanostructure thin films of bismuth telluride were fabricated on silicon substrates at room temperature using thermal evaporation method. Tellurium (Te) and bismuth (Bi) were deposited on silicon substrate in different ratio of thickness. These films were annealed at 50°C and 100°C. After heat treatment, the thin films attained the semiconductor nature. Samples were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM) to show granular growth. Swati Arora, Vivek Jaimini, Subodh Srivastava, and Y. K. Vijay Copyright © 2017 Swati Arora et al. All rights reserved. Investigation of the Mode Structures of Multiphoton Induced Ultraviolet Laser in a ZnO Microrod Mon, 20 Mar 2017 00:00:00 +0000 Hexagonal wurtzite structural ZnO microrods were fabricated by vapor-phase transport method. Under the excitation of a pulse laser with 1200 nm wavelength, the multiphoton induced ultraviolet (UV) laser was observed in a microrod. The dependence of the laser mode structures on pump intensity was investigated. The result indicates that the laser belongs to whispering gallery mode (WGM) at low pump intensity and Fabry-Perot (FP) mode at high pump intensity. The corresponding positive feedback mechanisms were discussed. Guangping Zhu Copyright © 2017 Guangping Zhu. All rights reserved. Fabrication of Fiber Bragg Grating Coating with TiO2 Nanostructured Metal Oxide for Refractive Index Sensor Thu, 16 Mar 2017 00:00:00 +0000 To increase the sensitivity of biosensor a new approach using an optical fiber Bragg grating (FBG) coated with a suitable nanostructured metal oxide (NMO) is proposed which is costly effective compared to other biosensors. Bragg grating was written on a D-shaped optical fiber by phase mask method using a 248 nm KrF excimer laser for a 5 min exposure time producing a grating with a period of 528 nm. Titanium dioxide (TiO2) nanostructured metal oxide was coated over the fiber for the purpose of increasing its sensing area. The etched D-shaped FBG was then coated with 312 nm thick TiO2 nanostructured layer to ensure propagating the radiation modes within the core. The final structure was used to sense deionized water and saline. The etched D-shaped FBG original sensitivity before coating to air-deionized water and to air-saline was 0.314 nm/riu and 0.142 nm/riu, respectively. After coating the sensitivity became 1.257 nm/riu for air-deionized water and 0.857 nm/riu for air-saline. Shaymaa Riyadh Tahhan, Rong Zhang Chen, Sheng Huang, Khalil I. Hajim, and Kevin P. Chen Copyright © 2017 Shaymaa Riyadh Tahhan et al. All rights reserved. Comparative Analysis of 6T, 7T, 8T, 9T, and 10T Realistic CNTFET Based SRAM Wed, 15 Mar 2017 00:00:00 +0000 CMOS technology below 10 nm faces fundamental limits which restricts its applicability for future electronic application mainly in terms of size, power consumption, and speed. In digital electronics, memory components play a very significant role. SRAM, due to its unique ability to retain data, is one of the most popular memory elements used in most of the digital devices. With aggressive technology scaling, the design of SRAM is seriously challenged in terms of delay, noise margin, and stability. This paper compares the performance of various CNTFET based SRAM cell topologies like 6T, 7T, 8T, 9T, and 10T cell with respect to static noise margin (SNM), write margin (WM), read delay, and power consumption. To consider the nonidealities of CNTFET, variations in tube diameter and effect of metallic tubes are considered for various structures with respect to various performance metrics like SNM, WM, read delay, and power consumption. Shital Joshi and Umar Alabawi Copyright © 2017 Shital Joshi and Umar Alabawi. All rights reserved. Corrigendum to “Ecofriendly Synthesis of Silver Nanoparticles from Garden Rhubarb (Rheum rhabarbarum)” Thu, 09 Mar 2017 08:15:40 +0000 P. R. Reddy, S. D. Ganesh, N. Saha, O. Zandraa, and P. Sáha Copyright © 2017 P. R. Reddy et al. All rights reserved. Structure and Electrochemical Properties of a Mechanochemically Processed Silicon and Oxide-Based Nanoscale Composite as an Active Material for Lithium-Ion Batteries Thu, 09 Mar 2017 00:00:00 +0000 Si is essential as an active material in Li-ion batteries because it provides both high charge and optimal cycling characteristics. A composite of Si particles, Cu particles, and pure H2O was realized to serve as an anode active material and optimize the charge–discharge characteristics of Li-ion batteries. The composite was produced by grinding using a planetary ball mill machine, which allowed for homogenous dispersion of nanoscale Cu3Si as Si–Cu alloy grains and nanoscale Si grains in each poly-Si particle produced. Furthermore, some Si particles were oxidized by H2O, and oxidized Si was distributed throughout the composite, mainly as silicon monoxide. As a result, each Si particle included silicon monoxide and conductive Cu3Si materials, allowing for effective optimization of the recharging and charge-discharge characteristics. Thus, a new and simple process was realized for synthesizing a Si active material composited with silicon oxides, including silicon monoxide. This Si-rich conductive material is suitable as an anode for Li-ion batteries with high charge and optimized cycling properties. Norihiro Shimoi and Kazuyuki Tohji Copyright © 2017 Norihiro Shimoi and Kazuyuki Tohji. All rights reserved. Controllable Growth of the ZnO Nanorod Arrays on the Al Substrate and Their Reversible Wettability Transition Thu, 23 Feb 2017 13:10:02 +0000 High-quality ZnO nanorod arrays are formed using the ZnO nanoflakes on the Al substrate as seed layer. A reversible wettability transition can be easily achieved via alternation of UV irradiation and dark storage. The physical adsorption of the water molecules on the surface of ZnO nanorod arrays is considered to be responsible for this transition, which is confirmed by X-ray photoelectron spectroscopy. Hong Li, Hongyan Liu, Yushan Li, and Qinzhuang Liu Copyright © 2017 Hong Li et al. All rights reserved. Characterization of PCL and Chitosan Nanoparticles as Carriers of Enoxaparin and Its Antithrombotic Effect in Animal Models of Venous Thrombosis Thu, 23 Feb 2017 00:00:00 +0000 This study was based on the preparation, characterization, and animal in vivo experiments performed to evaluate nanoparticles of poly(ɛ-caprolactone) (PCL) and chitosan as carriers of enoxaparin. The nanoparticles were characterized and presented satisfactory results in terms of size, polydispersity, and encapsulation efficiency. Anticoagulant activity of the nanoparticles was maintained for 14 hours when the administration was subcutaneous; however no activity was observed after oral administration. There was a significant reduction in thrombus size, in vivo, for both free and encapsulated enoxaparin in comparison with the control group after subcutaneous administration. Oral administration results however were indifferent. In conclusion, the double emulsion method w/o/w was efficient for enoxaparin encapsulation, producing spherical nanoparticles with high encapsulation efficiency. For in vivo studies, the encapsulated enoxaparin showed a sustained anticoagulant activity for a higher period of time compared to free enoxaparin, with an antithrombotic effect when administered subcutaneously. Lucas Bessa Prado, Stephany Cares Huber, Aline Barnabé, Fernanda Dutra Santiago Bassora, Devanira Souza Paixão, Nelson Duran, and Joyce Maria Annichino-Bizzacchi Copyright © 2017 Lucas Bessa Prado et al. All rights reserved. Aqueous Extract of Saraca indica Leaves in the Synthesis of Copper Oxide Nanoparticles: Finding a Way towards Going Green Wed, 22 Feb 2017 00:00:00 +0000 The present study is mainly aimed at the synthesis of copper oxide nanoparticles of varied size by green synthetic approach. The structural and morphological behavior of as-synthesized CuO nanoparticles were investigated using ultraviolet-visible spectral studies (UV-Vis), Fourier transform-Infrared spectroscopy (FT-IR), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The reduction of copper ions using aqueous extract of S. indica leaves produces nanoparticles of varied size and morphology. The images from SEM investigation revealed that the particles are spherical in shape with average diameter of 40–70 nm. TEM and HRTEM images clearly indicate the crystallinity and spherical nature of as-synthesized CuO nanoparticles with interplanar distance between two neighboring lattice fringes of 0.315 nm. Kollur Shiva Prasad, Alakananda Patra, Govindaraju Shruthi, and Shivamallu Chandan Copyright © 2017 Kollur Shiva Prasad et al. All rights reserved. Influence of Parameters of Screen Printing on Photoluminescence Properties of Nanophotonic Labels for Smart Packaging Tue, 14 Feb 2017 10:13:53 +0000 Smart packaging is becoming more popular on world market as a new type of packaging able to react to changes in a packaged product during storage and informs a customer about the safety of consumption of packaged food. This article investigates the main technological issues of the use of nanophotonic printing inks based on ZnO/SiO2 nanoparticles and polyvinylpyrrolidone (PVP) for printing active elements of smart packaging on paper substrates, concerning material properties and parameters of screen printing. It is determined that the use of ink compositions with medium content of ZnO/SiO2 nanoparticles allows obtaining blue-green and blue shades of luminescence color of screen printed images by changing ink layer thickness on papers with different contents of optical brightness agents (OBAs). The minimum content of ZnO/SiO2 nanoparticles in the developed fluorescent inks leads to blue luminescence colors regardless the contents of OBAs of the papers and ink layer thickness. The luminescence intensity is directly proportional to ink layer thickness and partly depends on the content of OBAs in the selected paper. In order to fabricate nanophotonic elements of smart packaging with predetermined photoluminescence properties, the influence of investigated factors on photoluminescence properties of printed nanophotonic labels should be taken into account. Olha Hrytsenko, Vitaliy Shvalagin, Galyna Grodziuk, and Vasyl Granchak Copyright © 2017 Olha Hrytsenko et al. All rights reserved. Silicone Doped Chitosan-Acrylamide Coencapsulated Urea Fertilizer: An Approach to Controlled Release Fertilizers Sun, 12 Feb 2017 00:00:00 +0000 In the absence of special management practices, urea is known to undergo chemical transformations resulting in severe losses (≈60–70%) of total fertilizer applied. In an attempt to design urea controlled release fertilizers in order to counterbalance the 60–70% loss, urea was cross-linked with chitosan and acrylamide under refluxed in situ copolymerization technique; the procedures were repeated with silicone doping prior cross-linking with MBA. The particles were characterized with FTIR/ATR, EDX, XRD, and SEM. The IR bands observed within 3426–409 cm−1 revealed the formation of new bands after coencapsulation for the N-H, N-H, OH, NH2, CH2, C=O, ′NH2, C=C, NH2, C-N, CH3, $C-N, NH2, C=O, and $CH2. Crystallinity indices for urea with and without silicone doping were found to be 50.9% and 72.1%, respectively, with a distinctive split peak at () 12.30°. The formation of Microdunes and Microballs 3D network sized 0.64 μm was noted. Release profiles demonstrated that 80% N was released in a period of 30 days at RT and pH 7. The release patterns exhibited linear and deformed sigmoid release models. Empirically, the findings demonstrated that it is possible to design urea controlled release fertilizers with varying particle sizes and morphologies by using chitosan-acrylamide coencapsulation. Sempeho Ibahati Siafu Copyright © 2017 Sempeho Ibahati Siafu. All rights reserved. Effect of Vacancy Defects on the Electronic Structure and Optical Properties of GaN Sun, 12 Feb 2017 00:00:00 +0000 The effect of gallium vacancy () and nitrogen vacancy () defects on the electronic structure and optical properties of GaN using the generalized gradient approximation method within the density functional theory were investigated. The results show that the band gap increases in GaN with vacancy defects. Crystal parameters decrease in GaN with nitrogen vacancy (GaN:) and increase in GaN with gallium vacancy (GaN:). The Ga vacancy introduces defect levels at the top of the valence band, and the defect levels are contributed by N2p electron states. In addition, the energy band shifts to lower energy in GaN: and moves to higher energy in GaN:. The level splitting is observed in the N2p states of GaN: and Ga3d states of GaN:. New peaks appear in lower energy region of imaginary dielectric function in GaN: and GaN:. The main peak moves to higher energy slightly and the intensity decreases. Lili Cai and Cuiju Feng Copyright © 2017 Lili Cai and Cuiju Feng. All rights reserved. Fabrication of Photomagnetic Carbon Surfaces via Redox Assembly Thu, 09 Feb 2017 06:02:57 +0000 3-Aminophenylboronic acid (APBA) and the complex Ru(bpy)2(phendione)2+ (bpy = 2,2′-bipyridine, phendione = 1,10-phenanthroline-5,6-dione) were found to be useful building blocks for preparing photomagnetic carbon surfaces. Scanning tunneling microscopy (STM) showed that when APBA was diazotized in acidic sodium nitrite solutions and cathodically reduced with highly ordered pyrolytic graphite (HOPG) electrodes, nanoscale films formed on the electrodes. The resulting HOPG had strong affinities for phendione and Ru(bpy)2(phendione)2+ as the electrodes were biased in the presence of them, respectively, with voltages more negative than the cathodic peak potentials for phendione/phendiol and Ru(bpy)2(phendione)2+/Ru(bpy)2(phendiol)2+ (phendiol = 1,10-phenanthroline-5,6-diol). However, if APBA was excluded, the affinities did not exist. Boronate ester formation featured prominently in these intermolecular interactions. The average increments in the HOPG surface roughness contributed by APBA and Ru(bpy)2(phendione)2+ were roughly 1 : 2, suggesting that the reaction stoichiometry between APBA and Ru(bpy)2(phendione)2+ be 1 : 1. Ru(bpy)2(phendione)2+ could also be grafted to carbon nanotubes (CNTs) under conditions similar to those for the HOPG using ascorbate as sacrificial donor. The resulting CNTs and HOPG exhibited photomagnetism when exposed to the 473 nm light. The ruthenium complex was shown to be a room-temperature photomagnetism precursor, and APBA was shown to be an effective molecular bridge for the complex and carbon substrates. Y.-L. Song and C. M. Wang Copyright © 2017 Y.-L. Song and C. M. Wang. All rights reserved. WO3-Doped TiO2 Coating on Charcoal Activated with Increase Photocatalytic and Antibacterial Properties Synthesized by Microwave-Assisted Sol-Gel Method Tue, 31 Jan 2017 13:44:25 +0000 WO3-doped TiO2 coating on charcoal activated (CA) was prepared by microwave-assisted sol-gel method. The samples calcined at the temperature of 500°C for 2 h with a heating rate of 10°C/min were characterized by XRD, EDS, and SEM. The photocatalytic and antibacterial activities of WO3-doped TiO2 coating on CA were investigated by means of degradation of a methylene blue (MB) solution and against the bacteria E. coli, respectively. The effects of WO3 concentration were discussed. The 1% WO3-doped TiO2 coated CA seems to exhibit the higher photocatalytic and antibacterial activity than other samples. The WO3-doped TiO2 coated on CA are expected to be applied as a photocatalyst for water purification. Weerachai Sangchay Copyright © 2017 Weerachai Sangchay. All rights reserved. Deposition and Characterization of Molybdenum Thin Film Using Direct Current Magnetron and Atomic Force Microscopy Tue, 31 Jan 2017 00:00:00 +0000 In this paper, pure molybdenum (Mo) thin film has been deposited on blank Si substrate by DC magnetron sputtering technique. The deposition condition for all samples has not been changed except for the deposition time in order to study the influence of time on the thickness and surface morphology of molybdenum thin film. The surface profiler has been used to measure the surface thickness. Atomic force microscopy technique was employed to investigate the roughness and grain structure of Mo thin film. The thickness and grain of molybdenum thin film layer has been found to increase with respect to time, while the surface roughness decreases. The average roughness, root mean square roughness, surface skewness, and surface kurtosis parameters are used to analyze the surface morphology of Mo thin film. Smooth surface has been observed. From grain analysis, a uniform grain distribution along the surface has been found. The obtained results allowed us to decide the optimal time to deposit molybdenum thin film layer of 20–100 nm thickness and subsequently patterned as electrodes (source/drain) in carbon nanotube-channel transistor. Muhtade Mustafa Aqil, Mohd Asyadi Azam, Mohd Faizal Aziz, and Rhonira Latif Copyright © 2017 Muhtade Mustafa Aqil et al. All rights reserved. Nanocrystalline Porous Hydrogen Storage Based on Vanadium and Titanium Nitrides Tue, 24 Jan 2017 00:00:00 +0000 This review summarizes results of our study of the application of ion-beam assisted deposition (IBAD) technology for creation of nanoporous thin-film structures that can absorb more than 6 wt.% of hydrogen. Data of mathematical modeling are presented highlighting the structure formation and component creation of the films during their deposition at the time of simultaneous bombardment by mixed beam of nitrogen and helium ions with energy of 30 keV. Results of high-resolution transmission electron microscopy revealed that VNx films consist of 150–200 nm particles, boundaries of which contain nanopores of 10–15 nm diameters. Particles themselves consist of randomly oriented 10–20 nm nanograins. Grain boundaries also contain nanopores (3–8 nm). Examination of the absorption characteristics of VNx, TiNx, and Nx films showed that the amount of absorbed hydrogen depends very little on the chemical composition of films, but it is determined by the structure pore. The amount of absorbed hydrogen at 0.3 MPa and 20°C is 6-7 wt.%, whereas the bulk of hydrogen is accumulated in the grain boundaries and pores. Films begin to release hydrogen even at 50°C, and it is desorbed completely at the temperature range of 50–250°C. It was found that the electrical resistance of films during the hydrogen desorption increases 104 times. A. Goncharov, A. Guglya, A. Kalchenko, E. Solopikhina, V. Vlasov, and E. Lyubchenko Copyright © 2017 A. Goncharov et al. All rights reserved. Synthesis of LiMnPO4·Li3V2(PO4)3/C Nanocomposites for Lithium Ion Batteries Using Tributyl Phosphate as Phosphor Source Sun, 15 Jan 2017 11:02:57 +0000 The xLiMnPO4·yLi3V2(PO4)3/C (x/y = 1 : 0, 12 : 1, 8 : 1, 6 : 1, 4 : 1, 0 : 1) composite cathode materials are synthesized using tributyl phosphate as a novel organic phosphor source via a solid-state reaction process. All obtained xLiMnPO4·yLi3V2(PO4)3/C composites present similar particles morphology with an average size of ca. 100 nm and low extent agglomeration. The electrochemical performance of pristine LiMnPO4/C can be effectively improved by adding small amounts of Li3V2(PO4)3 additives. The 4LiMnPO4·Li3V2(PO4)3/C has a high discharge capacity of 143 mAh g−1 at 0.1 C and keeps its 94% at the end of 100 cycles. Yanming Wang, Bo Zhu, Xiaoyu Liu, and Fei Wang Copyright © 2017 Yanming Wang et al. All rights reserved. Sol-Gel Syntheses of Zinc Oxide and Hydrogenated Zinc Oxide (ZnO:H) Phases Thu, 05 Jan 2017 08:50:27 +0000 ZnO synthesized by chemical precipitation with varying starch concentrations (0.00, 0.01, 0.02, 0.05, 0.10, 0.15, and 0.20%) as stabilizing agent was used in making ZnO:H when placed in a glass tube under mild heat and hydrogen (H2) gas flow for 2 mins. Observations showed that the sample colour changed from white to light brown and finally to dark brown during the process particularly for the ZnO-starch samples. XRD data of ZnO (0.02%) and ZnO:H (0.02%) showed ZnO as the major phase with Zn(OH)2 impurity phase and a new ZnO:H peak at 2θ, 29.60° for ZnO and ZnO:H, respectively. The estimated particle sizes determined from XRD were 47 and 30 nm, respectively. The SEM of the 0.02% ZnO appeared more microporous and needle-like than those of 0.01%, while the EDX of both confirmed Zn and O as the main components. Different conductivities of 30.90 and 27.50 μS/cm were obtained for ZnO and ZnO:H samples in ethanol, respectively. Also, the UV-Vis absorption for both showed n-type and p-type material absorption bands at 310 cm−1, while the intensities of all the characteristic ZnO IR bands at 430–552 (ZnO vibrations) and 1500–1640 cm−1 (Zn-O stretching) increased for the corresponding ZnO:H samples. Joshua Lelesi Konne and Bright Obum Christopher Copyright © 2017 Joshua Lelesi Konne and Bright Obum Christopher. All rights reserved. Effect of Particle Size on the HDS Activity of Molybdenum Sulfide Tue, 27 Dec 2016 06:45:18 +0000 More than half of the total world oil reserves are heavy oil, extra heavy oil, and bitumen; however their catalytic conversion to more valuable products is challenging. The use of submicronic particles or nanoparticles of catalysts suspended in the feedstock may be a viable alternative to the conversion of heavy oils at refinery level or downhole (in situ upgrading). In the present work, molybdenum sulfide (MoS2) particles with varying diameters (10000–10 nm) were prepared using polyvinylpyrrolidone as capping agent. The prepared particles were characterized by DLS, TEM, XRD, and XPS and tested in the hydrodesulfurization (HDS) of a vacuum gas oil (VGO). A correlation between particle size and activity is presented. It was found that particles with diameters around 13 nm show double the HDS activity compared with the material with micrometric particle sizes (diameter ≈ 10,000 nm). Carola Contreras, Fernanda Isquierdo, Pedro Pereira-Almao, and Carlos E. Scott Copyright © 2016 Carola Contreras et al. All rights reserved. Biosynthesis of Iron Nanoparticles Using Tie Guanyin Tea Extract for Degradation of Bromothymol Blue Tue, 27 Dec 2016 06:35:54 +0000 Facile synthesis of zero-valent iron nanoparticles has been developed using Tie Guanyin tea extract as reducing and stabilizing agent. The characterization carried out by UV-Vis, SEM, TEM, XRD, and FTIR techniques has identified the successful synthesis of the zero-valent iron nanoparticles. It is evident from the TEM result that spherical zero-valent iron nanoparticles with average size of  nm have been obtained through biological method in this study. FTIR spectrum demonstrates that the polyphenols play an important role in the synthetic process. Diffraction peak at 2 of 44.9° and 49.1° in XRD spectrum explains the existence of the iron nanoparticles. Additionally, effect of concentration of iron nanoparticles and concentration of bromothymol blue on the kinetic rate constants during the degradation process was studied. Haiyan Xin, Xin Yang, Xiaoli Liu, Xueping Tang, Lianjin Weng, and Yuanyuan Han Copyright © 2016 Haiyan Xin et al. All rights reserved. Electrochemical Formation of Cerium Oxide/Layered Silicate Nanocomposite Films Sun, 25 Dec 2016 10:25:06 +0000 Cerium oxide/montmorillonite nanocomposite films were synthesized electrochemically from solutions containing 0.5 to 50% Na-montmorillonite. The nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. Nanocomposite films synthesized from montmorillonite concentrations lower than 10% were continuous, uniform, and dense. X-ray diffraction confirmed that the nanocomposite films retain the face-centered cubic structure of cerium oxide while incorporating exfoliated platelets of the montmorillonite into the matrix. In addition, calculations from XRD data showed particle sizes ranging from 4.50 to 6.50 nm for the nanocomposite coatings. Raman and FTIR spectroscopy had peaks present for cerium oxide and the layered silicates in the coatings. Cross-sectional scanning electron microscopy and energy-dispersive X-ray spectroscopy confirmed the presence of montmorillonite throughout the cerium oxide matrix. Adele Qi Wang and Teresa Diane Golden Copyright © 2016 Adele Qi Wang and Teresa Diane Golden. All rights reserved. Flame Spray Synthesis and Ammonia Sensing Properties of Pure α-MoO3 Nanosheets Sun, 18 Dec 2016 07:39:43 +0000 This paper highlights the flame spray synthesis of α-MoO3 using ammonium molybdate as precursor. The as-synthesized particles obtained were found to be ammonium molybdenum oxide and belonged to the triclinic crystal system. The particles crystallized to α-MoO3 upon thermal treatment at 500°C. Sensors were prepared by drop coating the powders onto alumina substrates coated with platinum electrodes and sensing tests were conducted evaluating the detection of ammonia concentrations down to ppb level concentration in air. The flame synthesized α-MoO3 based sensors show high sensitivity towards ammonia and may potentially be used in breath ammonia gas diagnostics. Gagan Jodhani, Jiahao Huang, and Perena Gouma Copyright © 2016 Gagan Jodhani et al. All rights reserved. Preparation and Characterisation of ZnO/NiO Nanocomposite Particles for Solar Cell Applications Thu, 15 Dec 2016 13:27:26 +0000 The mixture of ZnO and NiO effect on solar cell has been investigated. ZnO and NiO particles were produced by hydrothermal method and the produced particles were annealed at 500°C for 1 hour. Crystal structure and morphological properties of particles were examined by X-ray diffraction (XRD) and scanning electron microscope (SEM). XRD measurements showed that ZnO particles have a hexagonal wurtzite structure and NiO particles have a cubic structure. SEM results show that both ZnO and NiO particles are the form of nanoparticles. Dye-sensitized solar cells were fabricated by N-719 (Ruthenium) dyes and mixing ZnO/NiO particles in different ratios, 100/0, 50/50, and 0/100. It was observed that the solar cells made with ZnO have the highest performance with the efficiency of 0.542%. In addition, it was observed that when amount of NiO ratio increases in the mixture of ZnO/NiO, the efficiencies of DSSCs were observed to decrease. S. Kerli and Ü. Alver Copyright © 2016 S. Kerli and Ü. Alver. All rights reserved. Electrochemical Oxidations of p-Doped Semiconducting Single-Walled Carbon Nanotubes Thu, 15 Dec 2016 12:35:15 +0000 Two oxidation peaks at 0.99, 1.48 V versus Fc/Fc+ appear in the cyclic voltammograms of a series of defect-site functionalized SWNTs in methylene chloride solution in the presence of ferrocenes. These two peaks are demonstrated to be the electrochemical responses to the independent oxidation of v1 and v2 valence bands of -doped semiconducting SWNTs. Huaping Li and Lili Zhou Copyright © 2016 Huaping Li and Lili Zhou. All rights reserved. Synthesis and Characterization of Carbon Nanofibers Grown on Powdered Activated Carbon Thu, 15 Dec 2016 10:17:11 +0000 Carbon nanofibers (CNFs) were synthesized through nickel ion (Ni2+) impregnation of powdered activated carbon (PAC). Chemical Vapor Deposition (CVD) using acetylene gas, in the presence of hydrogen gas, was employed for the synthesis process. Various percentages (1, 3, 5, and 7 wt. %) of Ni2+ catalysts were used in the impregnation of Ni2+ into PAC. Field Emission Scanning Electron Microscope (FESEM), Fourier Transform Infrared (FTIR) Spectroscopy, Energy Dispersive X-Ray Analyzer (EDX), Transmission Electron Microscopy (TEM), Thermal Gravimetric Analysis (TGA), zeta potential, and Brunauer, Emmett, and Teller (BET) were utilized for the characterization of the novel composite, which possessed micro and nanodimensions. FESEM and TEM images revealed that the carbonaceous structure of the nanomaterials was fibrous instead of tubular with average width varying from 100 to 200 nanometers. The PAC surface area increased from 101 m2/g to 837 m2/g after the growth of CNF. TGA combustion temperature range was within 400°C and 570°C, while the average zeta potential of the nanocomposite materials was −24.9 mV, indicating its moderate dispersive nature in water. Yehya M. Ahmed, Abdullah Al-Mamun, Ahmad T. Jameel, Ma’an Fahmi R. AlKhatib, Mutiu K. Amosa, and Mohammed A. AlSaadi Copyright © 2016 Yehya M. Ahmed et al. All rights reserved. Sol-Gel Titanium Dioxide Nanoparticles: Preparation and Structural Characterization Tue, 13 Dec 2016 09:53:25 +0000 Titanium dioxide (TiO2) nanoparticle was achieved in an alternative sol-gel route, as involved in 1 M acidic solution: HCl-tetrahydrofuran (HCl-THF), HNO3-tetrahydrofuran (HNO3-THF), and ClHNO2-tetrahydrofuran (ClHNO2-THF) solution. Resultant TiO2 nanoparticle was further investigated in a systematic analytical approach. Nanoscale TiO2 structure was observed at a moderate hydrolysis ratio (). Particle size range was much narrower in an aprotic HNO3-THF medium, as compared to a differential HCl-THF medium. Biphasic TiO2 structure was detected at a certain hydrolysis ratio (). Even so, relative anatase content was rather insignificant in an aprotic HCl-THF medium, as compared to a differential HNO3-THF medium. Tetragonal TiO2 structure was observed in the entire hydrolysis ratio (). Interstitial lattice defect was evident in an aprotic HNO3-THF medium but absent in a differential ClHNO2-THF medium. Oon Lee Kang, Azizan Ahmad, Usman Ali Rana, and Nur Hasyareeda Hassan Copyright © 2016 Oon Lee Kang et al. All rights reserved. Synthesis of Tungsten Oxide Nanorod, Its Application on Textile Material, and Study of Its Functional Properties Mon, 21 Nov 2016 13:27:16 +0000 Nanomaterial and its application in textiles are emerging as vast and diverse field due to enhanced functionalized characteristics. This study emphasizes the fabrication of tungsten trioxide nanostructured rods and analyzes its electrostatic and ultraviolet resistance properties. These nanorods are synthesized by hydrothermal method. Through hydrothermal method rod like nanostructures were grown on polyester fabric as it withstands curing temperature easily. The growth mechanism of the film is investigated. Electrostatic analysis of treated polyester fabric was failed but the analysis of seeded solution revealed that it has tunable transmittance modulation under different voltages and repetitive cyclic between the clear and blue states. Ultraviolet resistance of 100% seeded polyester fabric was higher than untreated fabric with respect to increasing concentration of nanorods. Results show that although the seeded solution is perfect, the conductivity of tungsten trioxide cannot be achieved on textiles. Abdul Azeem, Munir Ashraf, Usman Munir, Zahid Sarwar, Sharjeel Abid, and Naeem Iqbal Copyright © 2016 Abdul Azeem et al. All rights reserved. Antimicrobial Properties of Chitosan-Alumina/f-MWCNT Nanocomposites Thu, 17 Nov 2016 08:08:19 +0000 Antimicrobial chitosan-alumina/functionalized-multiwalled carbon nanotube (f-MWCNT) nanocomposites were prepared by a simple phase inversion method. Scanning electron microscopy (SEM) analyses showed the change in the internal morphology of the composites and energy dispersive spectroscopy (EDS) confirmed the presence of alumina and f-MWCNTs in the chitosan polymer matrix. Fourier transform infrared (FTIR) spectroscopy showed the appearance of new functional groups from both alumina and f-MWCNTs, and thermogravimetric analysis (TGA) revealed that the addition of alumina and f-MWCNTs improved the thermal stability of the chitosan polymer. The presence of alumina and f-MWCNTs in the polymer matrix was found to improve the thermal stability and reduced the solubility of chitosan polymer. The prepared chitosan-alumina/f-MWCNT nanocomposites showed inhibition of twelve strains of bacterial strains that were tested. Thus, the nanocomposites show a potential for use as a biocide in water treatment for the removal of bacteria at different environmental conditions. Monaheng Masheane, Lebea Nthunya, Soraya Malinga, Edward Nxumalo, Tobias Barnard, and Sabelo Mhlanga Copyright © 2016 Monaheng Masheane et al. All rights reserved. Nanocrystalline Axially Bridged Iron Phthalocyanine Polymeric Conductor: (-Thiocyanato)(phthalocyaninato)iron(III) Wed, 16 Nov 2016 13:19:37 +0000 Skewered Iron(III) phthalocyanine conducting polymer can be constructed with the utilization of axial thiocyanato ligands ((-thiocyanato)(phthalocyaninato)iron(III)); () thereby creating additional avenues for electron transport through a linear SCN bridge, apart from the intermolecular orbital overlap between the Pc molecules. In this paper, we report on the conversion of bulk polymeric organic conductor into crystalline nanostructures through horizontal vapor phase growth process. The needle-like nanostructures are deemed to provide more ordered and, thus, more interactive interskewer polymer orientation, resulting in a twofold increase of its electrical conductivity per materials density unit. Eiza Shimizu, Gil Nonato Santos, and Derrick Ethelbhert Yu Copyright © 2016 Eiza Shimizu et al. All rights reserved.