Journal of Nanotechnology The latest articles from Hindawi © 2017 , Hindawi Limited . All rights reserved. Controllable Growth of the ZnO Nanorod Arrays on the Al Substrate and Their Reversible Wettability Transition Thu, 23 Feb 2017 13:10:02 +0000 High-quality ZnO nanorod arrays are formed using the ZnO nanoflakes on the Al substrate as seed layer. A reversible wettability transition can be easily achieved via alternation of UV irradiation and dark storage. The physical adsorption of the water molecules on the surface of ZnO nanorod arrays is considered to be responsible for this transition, which is confirmed by X-ray photoelectron spectroscopy. Hong Li, Hongyan Liu, Yushan Li, and Qinzhuang Liu Copyright © 2017 Hong Li et al. All rights reserved. Characterization of PCL and Chitosan Nanoparticles as Carriers of Enoxaparin and Its Antithrombotic Effect in Animal Models of Venous Thrombosis Thu, 23 Feb 2017 00:00:00 +0000 This study was based on the preparation, characterization, and animal in vivo experiments performed to evaluate nanoparticles of poly(ɛ-caprolactone) (PCL) and chitosan as carriers of enoxaparin. The nanoparticles were characterized and presented satisfactory results in terms of size, polydispersity, and encapsulation efficiency. Anticoagulant activity of the nanoparticles was maintained for 14 hours when the administration was subcutaneous; however no activity was observed after oral administration. There was a significant reduction in thrombus size, in vivo, for both free and encapsulated enoxaparin in comparison with the control group after subcutaneous administration. Oral administration results however were indifferent. In conclusion, the double emulsion method w/o/w was efficient for enoxaparin encapsulation, producing spherical nanoparticles with high encapsulation efficiency. For in vivo studies, the encapsulated enoxaparin showed a sustained anticoagulant activity for a higher period of time compared to free enoxaparin, with an antithrombotic effect when administered subcutaneously. Lucas Bessa Prado, Stephany Cares Huber, Aline Barnabé, Fernanda Dutra Santiago Bassora, Devanira Souza Paixão, Nelson Duran, and Joyce Maria Annichino-Bizzacchi Copyright © 2017 Lucas Bessa Prado et al. All rights reserved. Aqueous Extract of Saraca indica Leaves in the Synthesis of Copper Oxide Nanoparticles: Finding a Way towards Going Green Wed, 22 Feb 2017 00:00:00 +0000 The present study is mainly aimed at the synthesis of copper oxide nanoparticles of varied size by green synthetic approach. The structural and morphological behavior of as-synthesized CuO nanoparticles were investigated using ultraviolet-visible spectral studies (UV-Vis), Fourier transform-Infrared spectroscopy (FT-IR), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The reduction of copper ions using aqueous extract of S. indica leaves produces nanoparticles of varied size and morphology. The images from SEM investigation revealed that the particles are spherical in shape with average diameter of 40–70 nm. TEM and HRTEM images clearly indicate the crystallinity and spherical nature of as-synthesized CuO nanoparticles with interplanar distance between two neighboring lattice fringes of 0.315 nm. Kollur Shiva Prasad, Alakananda Patra, Govindaraju Shruthi, and Shivamallu Chandan Copyright © 2017 Kollur Shiva Prasad et al. All rights reserved. Influence of Parameters of Screen Printing on Photoluminescence Properties of Nanophotonic Labels for Smart Packaging Tue, 14 Feb 2017 10:13:53 +0000 Smart packaging is becoming more popular on world market as a new type of packaging able to react to changes in a packaged product during storage and informs a customer about the safety of consumption of packaged food. This article investigates the main technological issues of the use of nanophotonic printing inks based on ZnO/SiO2 nanoparticles and polyvinylpyrrolidone (PVP) for printing active elements of smart packaging on paper substrates, concerning material properties and parameters of screen printing. It is determined that the use of ink compositions with medium content of ZnO/SiO2 nanoparticles allows obtaining blue-green and blue shades of luminescence color of screen printed images by changing ink layer thickness on papers with different contents of optical brightness agents (OBAs). The minimum content of ZnO/SiO2 nanoparticles in the developed fluorescent inks leads to blue luminescence colors regardless the contents of OBAs of the papers and ink layer thickness. The luminescence intensity is directly proportional to ink layer thickness and partly depends on the content of OBAs in the selected paper. In order to fabricate nanophotonic elements of smart packaging with predetermined photoluminescence properties, the influence of investigated factors on photoluminescence properties of printed nanophotonic labels should be taken into account. Olha Hrytsenko, Vitaliy Shvalagin, Galyna Grodziuk, and Vasyl Granchak Copyright © 2017 Olha Hrytsenko et al. All rights reserved. Effect of Vacancy Defects on the Electronic Structure and Optical Properties of GaN Sun, 12 Feb 2017 00:00:00 +0000 The effect of gallium vacancy () and nitrogen vacancy () defects on the electronic structure and optical properties of GaN using the generalized gradient approximation method within the density functional theory were investigated. The results show that the band gap increases in GaN with vacancy defects. Crystal parameters decrease in GaN with nitrogen vacancy (GaN:) and increase in GaN with gallium vacancy (GaN:). The Ga vacancy introduces defect levels at the top of the valence band, and the defect levels are contributed by N2p electron states. In addition, the energy band shifts to lower energy in GaN: and moves to higher energy in GaN:. The level splitting is observed in the N2p states of GaN: and Ga3d states of GaN:. New peaks appear in lower energy region of imaginary dielectric function in GaN: and GaN:. The main peak moves to higher energy slightly and the intensity decreases. Lili Cai and Cuiju Feng Copyright © 2017 Lili Cai and Cuiju Feng. All rights reserved. Silicone Doped Chitosan-Acrylamide Coencapsulated Urea Fertilizer: An Approach to Controlled Release Fertilizers Sun, 12 Feb 2017 00:00:00 +0000 In the absence of special management practices, urea is known to undergo chemical transformations resulting in severe losses (≈60–70%) of total fertilizer applied. In an attempt to design urea controlled release fertilizers in order to counterbalance the 60–70% loss, urea was cross-linked with chitosan and acrylamide under refluxed in situ copolymerization technique; the procedures were repeated with silicone doping prior cross-linking with MBA. The particles were characterized with FTIR/ATR, EDX, XRD, and SEM. The IR bands observed within 3426–409 cm−1 revealed the formation of new bands after coencapsulation for the N-H, N-H, OH, NH2, CH2, C=O, ′NH2, C=C, NH2, C-N, CH3, $C-N, NH2, C=O, and $CH2. Crystallinity indices for urea with and without silicone doping were found to be 50.9% and 72.1%, respectively, with a distinctive split peak at () 12.30°. The formation of Microdunes and Microballs 3D network sized 0.64 μm was noted. Release profiles demonstrated that 80% N was released in a period of 30 days at RT and pH 7. The release patterns exhibited linear and deformed sigmoid release models. Empirically, the findings demonstrated that it is possible to design urea controlled release fertilizers with varying particle sizes and morphologies by using chitosan-acrylamide coencapsulation. Sempeho Ibahati Siafu Copyright © 2017 Sempeho Ibahati Siafu. All rights reserved. Fabrication of Photomagnetic Carbon Surfaces via Redox Assembly Thu, 09 Feb 2017 06:02:57 +0000 3-Aminophenylboronic acid (APBA) and the complex Ru(bpy)2(phendione)2+ (bpy = 2,2′-bipyridine, phendione = 1,10-phenanthroline-5,6-dione) were found to be useful building blocks for preparing photomagnetic carbon surfaces. Scanning tunneling microscopy (STM) showed that when APBA was diazotized in acidic sodium nitrite solutions and cathodically reduced with highly ordered pyrolytic graphite (HOPG) electrodes, nanoscale films formed on the electrodes. The resulting HOPG had strong affinities for phendione and Ru(bpy)2(phendione)2+ as the electrodes were biased in the presence of them, respectively, with voltages more negative than the cathodic peak potentials for phendione/phendiol and Ru(bpy)2(phendione)2+/Ru(bpy)2(phendiol)2+ (phendiol = 1,10-phenanthroline-5,6-diol). However, if APBA was excluded, the affinities did not exist. Boronate ester formation featured prominently in these intermolecular interactions. The average increments in the HOPG surface roughness contributed by APBA and Ru(bpy)2(phendione)2+ were roughly 1 : 2, suggesting that the reaction stoichiometry between APBA and Ru(bpy)2(phendione)2+ be 1 : 1. Ru(bpy)2(phendione)2+ could also be grafted to carbon nanotubes (CNTs) under conditions similar to those for the HOPG using ascorbate as sacrificial donor. The resulting CNTs and HOPG exhibited photomagnetism when exposed to the 473 nm light. The ruthenium complex was shown to be a room-temperature photomagnetism precursor, and APBA was shown to be an effective molecular bridge for the complex and carbon substrates. Y.-L. Song and C. M. Wang Copyright © 2017 Y.-L. Song and C. M. Wang. All rights reserved. WO3-Doped TiO2 Coating on Charcoal Activated with Increase Photocatalytic and Antibacterial Properties Synthesized by Microwave-Assisted Sol-Gel Method Tue, 31 Jan 2017 13:44:25 +0000 WO3-doped TiO2 coating on charcoal activated (CA) was prepared by microwave-assisted sol-gel method. The samples calcined at the temperature of 500°C for 2 h with a heating rate of 10°C/min were characterized by XRD, EDS, and SEM. The photocatalytic and antibacterial activities of WO3-doped TiO2 coating on CA were investigated by means of degradation of a methylene blue (MB) solution and against the bacteria E. coli, respectively. The effects of WO3 concentration were discussed. The 1% WO3-doped TiO2 coated CA seems to exhibit the higher photocatalytic and antibacterial activity than other samples. The WO3-doped TiO2 coated on CA are expected to be applied as a photocatalyst for water purification. Weerachai Sangchay Copyright © 2017 Weerachai Sangchay. All rights reserved. Deposition and Characterization of Molybdenum Thin Film Using Direct Current Magnetron and Atomic Force Microscopy Tue, 31 Jan 2017 00:00:00 +0000 In this paper, pure molybdenum (Mo) thin film has been deposited on blank Si substrate by DC magnetron sputtering technique. The deposition condition for all samples has not been changed except for the deposition time in order to study the influence of time on the thickness and surface morphology of molybdenum thin film. The surface profiler has been used to measure the surface thickness. Atomic force microscopy technique was employed to investigate the roughness and grain structure of Mo thin film. The thickness and grain of molybdenum thin film layer has been found to increase with respect to time, while the surface roughness decreases. The average roughness, root mean square roughness, surface skewness, and surface kurtosis parameters are used to analyze the surface morphology of Mo thin film. Smooth surface has been observed. From grain analysis, a uniform grain distribution along the surface has been found. The obtained results allowed us to decide the optimal time to deposit molybdenum thin film layer of 20–100 nm thickness and subsequently patterned as electrodes (source/drain) in carbon nanotube-channel transistor. Muhtade Mustafa Aqil, Mohd Asyadi Azam, Mohd Faizal Aziz, and Rhonira Latif Copyright © 2017 Muhtade Mustafa Aqil et al. All rights reserved. Nanocrystalline Porous Hydrogen Storage Based on Vanadium and Titanium Nitrides Tue, 24 Jan 2017 00:00:00 +0000 This review summarizes results of our study of the application of ion-beam assisted deposition (IBAD) technology for creation of nanoporous thin-film structures that can absorb more than 6 wt.% of hydrogen. Data of mathematical modeling are presented highlighting the structure formation and component creation of the films during their deposition at the time of simultaneous bombardment by mixed beam of nitrogen and helium ions with energy of 30 keV. Results of high-resolution transmission electron microscopy revealed that VNx films consist of 150–200 nm particles, boundaries of which contain nanopores of 10–15 nm diameters. Particles themselves consist of randomly oriented 10–20 nm nanograins. Grain boundaries also contain nanopores (3–8 nm). Examination of the absorption characteristics of VNx, TiNx, and Nx films showed that the amount of absorbed hydrogen depends very little on the chemical composition of films, but it is determined by the structure pore. The amount of absorbed hydrogen at 0.3 MPa and 20°C is 6-7 wt.%, whereas the bulk of hydrogen is accumulated in the grain boundaries and pores. Films begin to release hydrogen even at 50°C, and it is desorbed completely at the temperature range of 50–250°C. It was found that the electrical resistance of films during the hydrogen desorption increases 104 times. A. Goncharov, A. Guglya, A. Kalchenko, E. Solopikhina, V. Vlasov, and E. Lyubchenko Copyright © 2017 A. Goncharov et al. All rights reserved. Synthesis of LiMnPO4·Li3V2(PO4)3/C Nanocomposites for Lithium Ion Batteries Using Tributyl Phosphate as Phosphor Source Sun, 15 Jan 2017 11:02:57 +0000 The xLiMnPO4·yLi3V2(PO4)3/C (x/y = 1 : 0, 12 : 1, 8 : 1, 6 : 1, 4 : 1, 0 : 1) composite cathode materials are synthesized using tributyl phosphate as a novel organic phosphor source via a solid-state reaction process. All obtained xLiMnPO4·yLi3V2(PO4)3/C composites present similar particles morphology with an average size of ca. 100 nm and low extent agglomeration. The electrochemical performance of pristine LiMnPO4/C can be effectively improved by adding small amounts of Li3V2(PO4)3 additives. The 4LiMnPO4·Li3V2(PO4)3/C has a high discharge capacity of 143 mAh g−1 at 0.1 C and keeps its 94% at the end of 100 cycles. Yanming Wang, Bo Zhu, Xiaoyu Liu, and Fei Wang Copyright © 2017 Yanming Wang et al. All rights reserved. Sol-Gel Syntheses of Zinc Oxide and Hydrogenated Zinc Oxide (ZnO:H) Phases Thu, 05 Jan 2017 08:50:27 +0000 ZnO synthesized by chemical precipitation with varying starch concentrations (0.00, 0.01, 0.02, 0.05, 0.10, 0.15, and 0.20%) as stabilizing agent was used in making ZnO:H when placed in a glass tube under mild heat and hydrogen (H2) gas flow for 2 mins. Observations showed that the sample colour changed from white to light brown and finally to dark brown during the process particularly for the ZnO-starch samples. XRD data of ZnO (0.02%) and ZnO:H (0.02%) showed ZnO as the major phase with Zn(OH)2 impurity phase and a new ZnO:H peak at 2θ, 29.60° for ZnO and ZnO:H, respectively. The estimated particle sizes determined from XRD were 47 and 30 nm, respectively. The SEM of the 0.02% ZnO appeared more microporous and needle-like than those of 0.01%, while the EDX of both confirmed Zn and O as the main components. Different conductivities of 30.90 and 27.50 μS/cm were obtained for ZnO and ZnO:H samples in ethanol, respectively. Also, the UV-Vis absorption for both showed n-type and p-type material absorption bands at 310 cm−1, while the intensities of all the characteristic ZnO IR bands at 430–552 (ZnO vibrations) and 1500–1640 cm−1 (Zn-O stretching) increased for the corresponding ZnO:H samples. Joshua Lelesi Konne and Bright Obum Christopher Copyright © 2017 Joshua Lelesi Konne and Bright Obum Christopher. All rights reserved. Effect of Particle Size on the HDS Activity of Molybdenum Sulfide Tue, 27 Dec 2016 06:45:18 +0000 More than half of the total world oil reserves are heavy oil, extra heavy oil, and bitumen; however their catalytic conversion to more valuable products is challenging. The use of submicronic particles or nanoparticles of catalysts suspended in the feedstock may be a viable alternative to the conversion of heavy oils at refinery level or downhole (in situ upgrading). In the present work, molybdenum sulfide (MoS2) particles with varying diameters (10000–10 nm) were prepared using polyvinylpyrrolidone as capping agent. The prepared particles were characterized by DLS, TEM, XRD, and XPS and tested in the hydrodesulfurization (HDS) of a vacuum gas oil (VGO). A correlation between particle size and activity is presented. It was found that particles with diameters around 13 nm show double the HDS activity compared with the material with micrometric particle sizes (diameter ≈ 10,000 nm). Carola Contreras, Fernanda Isquierdo, Pedro Pereira-Almao, and Carlos E. Scott Copyright © 2016 Carola Contreras et al. All rights reserved. Biosynthesis of Iron Nanoparticles Using Tie Guanyin Tea Extract for Degradation of Bromothymol Blue Tue, 27 Dec 2016 06:35:54 +0000 Facile synthesis of zero-valent iron nanoparticles has been developed using Tie Guanyin tea extract as reducing and stabilizing agent. The characterization carried out by UV-Vis, SEM, TEM, XRD, and FTIR techniques has identified the successful synthesis of the zero-valent iron nanoparticles. It is evident from the TEM result that spherical zero-valent iron nanoparticles with average size of  nm have been obtained through biological method in this study. FTIR spectrum demonstrates that the polyphenols play an important role in the synthetic process. Diffraction peak at 2 of 44.9° and 49.1° in XRD spectrum explains the existence of the iron nanoparticles. Additionally, effect of concentration of iron nanoparticles and concentration of bromothymol blue on the kinetic rate constants during the degradation process was studied. Haiyan Xin, Xin Yang, Xiaoli Liu, Xueping Tang, Lianjin Weng, and Yuanyuan Han Copyright © 2016 Haiyan Xin et al. All rights reserved. Electrochemical Formation of Cerium Oxide/Layered Silicate Nanocomposite Films Sun, 25 Dec 2016 10:25:06 +0000 Cerium oxide/montmorillonite nanocomposite films were synthesized electrochemically from solutions containing 0.5 to 50% Na-montmorillonite. The nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. Nanocomposite films synthesized from montmorillonite concentrations lower than 10% were continuous, uniform, and dense. X-ray diffraction confirmed that the nanocomposite films retain the face-centered cubic structure of cerium oxide while incorporating exfoliated platelets of the montmorillonite into the matrix. In addition, calculations from XRD data showed particle sizes ranging from 4.50 to 6.50 nm for the nanocomposite coatings. Raman and FTIR spectroscopy had peaks present for cerium oxide and the layered silicates in the coatings. Cross-sectional scanning electron microscopy and energy-dispersive X-ray spectroscopy confirmed the presence of montmorillonite throughout the cerium oxide matrix. Adele Qi Wang and Teresa Diane Golden Copyright © 2016 Adele Qi Wang and Teresa Diane Golden. All rights reserved. Flame Spray Synthesis and Ammonia Sensing Properties of Pure α-MoO3 Nanosheets Sun, 18 Dec 2016 07:39:43 +0000 This paper highlights the flame spray synthesis of α-MoO3 using ammonium molybdate as precursor. The as-synthesized particles obtained were found to be ammonium molybdenum oxide and belonged to the triclinic crystal system. The particles crystallized to α-MoO3 upon thermal treatment at 500°C. Sensors were prepared by drop coating the powders onto alumina substrates coated with platinum electrodes and sensing tests were conducted evaluating the detection of ammonia concentrations down to ppb level concentration in air. The flame synthesized α-MoO3 based sensors show high sensitivity towards ammonia and may potentially be used in breath ammonia gas diagnostics. Gagan Jodhani, Jiahao Huang, and Perena Gouma Copyright © 2016 Gagan Jodhani et al. All rights reserved. Preparation and Characterisation of ZnO/NiO Nanocomposite Particles for Solar Cell Applications Thu, 15 Dec 2016 13:27:26 +0000 The mixture of ZnO and NiO effect on solar cell has been investigated. ZnO and NiO particles were produced by hydrothermal method and the produced particles were annealed at 500°C for 1 hour. Crystal structure and morphological properties of particles were examined by X-ray diffraction (XRD) and scanning electron microscope (SEM). XRD measurements showed that ZnO particles have a hexagonal wurtzite structure and NiO particles have a cubic structure. SEM results show that both ZnO and NiO particles are the form of nanoparticles. Dye-sensitized solar cells were fabricated by N-719 (Ruthenium) dyes and mixing ZnO/NiO particles in different ratios, 100/0, 50/50, and 0/100. It was observed that the solar cells made with ZnO have the highest performance with the efficiency of 0.542%. In addition, it was observed that when amount of NiO ratio increases in the mixture of ZnO/NiO, the efficiencies of DSSCs were observed to decrease. S. Kerli and Ü. Alver Copyright © 2016 S. Kerli and Ü. Alver. All rights reserved. Electrochemical Oxidations of p-Doped Semiconducting Single-Walled Carbon Nanotubes Thu, 15 Dec 2016 12:35:15 +0000 Two oxidation peaks at 0.99, 1.48 V versus Fc/Fc+ appear in the cyclic voltammograms of a series of defect-site functionalized SWNTs in methylene chloride solution in the presence of ferrocenes. These two peaks are demonstrated to be the electrochemical responses to the independent oxidation of v1 and v2 valence bands of -doped semiconducting SWNTs. Huaping Li and Lili Zhou Copyright © 2016 Huaping Li and Lili Zhou. All rights reserved. Synthesis and Characterization of Carbon Nanofibers Grown on Powdered Activated Carbon Thu, 15 Dec 2016 10:17:11 +0000 Carbon nanofibers (CNFs) were synthesized through nickel ion (Ni2+) impregnation of powdered activated carbon (PAC). Chemical Vapor Deposition (CVD) using acetylene gas, in the presence of hydrogen gas, was employed for the synthesis process. Various percentages (1, 3, 5, and 7 wt. %) of Ni2+ catalysts were used in the impregnation of Ni2+ into PAC. Field Emission Scanning Electron Microscope (FESEM), Fourier Transform Infrared (FTIR) Spectroscopy, Energy Dispersive X-Ray Analyzer (EDX), Transmission Electron Microscopy (TEM), Thermal Gravimetric Analysis (TGA), zeta potential, and Brunauer, Emmett, and Teller (BET) were utilized for the characterization of the novel composite, which possessed micro and nanodimensions. FESEM and TEM images revealed that the carbonaceous structure of the nanomaterials was fibrous instead of tubular with average width varying from 100 to 200 nanometers. The PAC surface area increased from 101 m2/g to 837 m2/g after the growth of CNF. TGA combustion temperature range was within 400°C and 570°C, while the average zeta potential of the nanocomposite materials was −24.9 mV, indicating its moderate dispersive nature in water. Yehya M. Ahmed, Abdullah Al-Mamun, Ahmad T. Jameel, Ma’an Fahmi R. AlKhatib, Mutiu K. Amosa, and Mohammed A. AlSaadi Copyright © 2016 Yehya M. Ahmed et al. All rights reserved. Sol-Gel Titanium Dioxide Nanoparticles: Preparation and Structural Characterization Tue, 13 Dec 2016 09:53:25 +0000 Titanium dioxide (TiO2) nanoparticle was achieved in an alternative sol-gel route, as involved in 1 M acidic solution: HCl-tetrahydrofuran (HCl-THF), HNO3-tetrahydrofuran (HNO3-THF), and ClHNO2-tetrahydrofuran (ClHNO2-THF) solution. Resultant TiO2 nanoparticle was further investigated in a systematic analytical approach. Nanoscale TiO2 structure was observed at a moderate hydrolysis ratio (). Particle size range was much narrower in an aprotic HNO3-THF medium, as compared to a differential HCl-THF medium. Biphasic TiO2 structure was detected at a certain hydrolysis ratio (). Even so, relative anatase content was rather insignificant in an aprotic HCl-THF medium, as compared to a differential HNO3-THF medium. Tetragonal TiO2 structure was observed in the entire hydrolysis ratio (). Interstitial lattice defect was evident in an aprotic HNO3-THF medium but absent in a differential ClHNO2-THF medium. Oon Lee Kang, Azizan Ahmad, Usman Ali Rana, and Nur Hasyareeda Hassan Copyright © 2016 Oon Lee Kang et al. All rights reserved. Synthesis of Tungsten Oxide Nanorod, Its Application on Textile Material, and Study of Its Functional Properties Mon, 21 Nov 2016 13:27:16 +0000 Nanomaterial and its application in textiles are emerging as vast and diverse field due to enhanced functionalized characteristics. This study emphasizes the fabrication of tungsten trioxide nanostructured rods and analyzes its electrostatic and ultraviolet resistance properties. These nanorods are synthesized by hydrothermal method. Through hydrothermal method rod like nanostructures were grown on polyester fabric as it withstands curing temperature easily. The growth mechanism of the film is investigated. Electrostatic analysis of treated polyester fabric was failed but the analysis of seeded solution revealed that it has tunable transmittance modulation under different voltages and repetitive cyclic between the clear and blue states. Ultraviolet resistance of 100% seeded polyester fabric was higher than untreated fabric with respect to increasing concentration of nanorods. Results show that although the seeded solution is perfect, the conductivity of tungsten trioxide cannot be achieved on textiles. Abdul Azeem, Munir Ashraf, Usman Munir, Zahid Sarwar, Sharjeel Abid, and Naeem Iqbal Copyright © 2016 Abdul Azeem et al. All rights reserved. Antimicrobial Properties of Chitosan-Alumina/f-MWCNT Nanocomposites Thu, 17 Nov 2016 08:08:19 +0000 Antimicrobial chitosan-alumina/functionalized-multiwalled carbon nanotube (f-MWCNT) nanocomposites were prepared by a simple phase inversion method. Scanning electron microscopy (SEM) analyses showed the change in the internal morphology of the composites and energy dispersive spectroscopy (EDS) confirmed the presence of alumina and f-MWCNTs in the chitosan polymer matrix. Fourier transform infrared (FTIR) spectroscopy showed the appearance of new functional groups from both alumina and f-MWCNTs, and thermogravimetric analysis (TGA) revealed that the addition of alumina and f-MWCNTs improved the thermal stability of the chitosan polymer. The presence of alumina and f-MWCNTs in the polymer matrix was found to improve the thermal stability and reduced the solubility of chitosan polymer. The prepared chitosan-alumina/f-MWCNT nanocomposites showed inhibition of twelve strains of bacterial strains that were tested. Thus, the nanocomposites show a potential for use as a biocide in water treatment for the removal of bacteria at different environmental conditions. Monaheng Masheane, Lebea Nthunya, Soraya Malinga, Edward Nxumalo, Tobias Barnard, and Sabelo Mhlanga Copyright © 2016 Monaheng Masheane et al. All rights reserved. Nanocrystalline Axially Bridged Iron Phthalocyanine Polymeric Conductor: (-Thiocyanato)(phthalocyaninato)iron(III) Wed, 16 Nov 2016 13:19:37 +0000 Skewered Iron(III) phthalocyanine conducting polymer can be constructed with the utilization of axial thiocyanato ligands ((-thiocyanato)(phthalocyaninato)iron(III)); () thereby creating additional avenues for electron transport through a linear SCN bridge, apart from the intermolecular orbital overlap between the Pc molecules. In this paper, we report on the conversion of bulk polymeric organic conductor into crystalline nanostructures through horizontal vapor phase growth process. The needle-like nanostructures are deemed to provide more ordered and, thus, more interactive interskewer polymer orientation, resulting in a twofold increase of its electrical conductivity per materials density unit. Eiza Shimizu, Gil Nonato Santos, and Derrick Ethelbhert Yu Copyright © 2016 Eiza Shimizu et al. All rights reserved. Release of siRNA from Liposomes Induced by Curcumin Wed, 16 Nov 2016 12:57:24 +0000 Liposomes are a potential carrier of small interfering RNA (siRNA) for drug delivery systems (DDS). In this study, we searched for a molecule capable of controlling the release of siRNA from a certain type of liposomes and found that curcumin could induce the release of siRNA from the liposomes encapsulating siRNA within 30 min. However, the release of siRNA from the liposomes by curcumin showed a unique dose-response (i.e., bell-shaped curve) with a maximal induction at around 60 μg/ml of curcumin. Liposomal lipid compositions and temperatures influenced the efficiency in the release of siRNA induced by curcumin. About 10% of curcumin at a 60 μg/ml dose was incorporated into the liposomes within 30 min under our experimental conditions. Our results suggest a possibility that curcumin is useful in controlling the permeability of liposomes carrying large molecules like siRNA. Kazuyo Fujita, Yoshie Hiramatsu, Hideki Minematsu, Masaharu Somiya, Shun’ichi Kuroda, Masaharu Seno, and Shuji Hinuma Copyright © 2016 Kazuyo Fujita et al. All rights reserved. Photoluminescence Response in Carbon Films Deposited by Pulsed Laser Deposition onto GaAs Substrates at Low Vacuum Thu, 10 Nov 2016 09:03:05 +0000 Carbon films were deposited onto GaAs substrates by pulsed laser deposition at low vacuum (10–15 mTorr) from a graphite target. Films were prepared at different number of pulses (1500 to 6000) with fixed fluence (32 J/cm2), target-to-substrate distance, and pulse frequency using a Q:Switched Nd:YAG laser at 1064 nm operating at a frequency of 10 Hz and producing burst-mode pulses with total duration per shot of 49 ns. Films were characterized by optical microscopy, atomic force microscopy, laser induced breakdown spectroscopy, X-ray diffraction, and photoluminescence spectroscopy. Deposited films were visually smooth and adherent but on the other hand evidence of splashing was observed in all the films. Thickness varied linearly with the number of pulses from 8 to 42 μm with maximum height differences around 700 nm. Hexagonal and orthorhombic carbon was found in all the films and there was no evidence of nitrogen or oxygen incorporation during ablation process. Broad photoluminescence bands were observed and, particularly, emission peaks at 475–480 nm, 540–550 nm, 590 nm, and 625 nm. Bands tend to shift to lower wavelength with film thickness, suggesting that luminescence comes from splashed nanostructures influenced by the semiconducting substrate. This particular substrate effect is vanished as thickness of the films increases. F. Caballero-Briones, G. Santana, T. Flores, and L. Ponce Copyright © 2016 F. Caballero-Briones et al. All rights reserved. Effect of Electrochemical Treatment on Electrical Conductivity of Conical Carbon Nanotubes Mon, 07 Nov 2016 14:25:59 +0000 Interaction of conical carbon nanotubes (CNTs) with hydrogen during electrochemical treatment and its effect on their electronic properties was studied. The temperature dependencies of electroconductivity of initial and electrochemically hydrogenated conical CNTs were investigated by using four-probe van der Pauw method. The studies revealed that the electrochemical hydrogen absorption leaded to a significant reduction in the electroconductivity of conical carbon nanotubes. We assume that these changes can be associated with a decrease in the concentration of charge carriers as a result of hydrogen localization on the carbon π-orbitals, the transition from sp2 to sp3 hybridization of conical CNTs band structure, and, therefore, a metal-semiconductor-insulator transition. S. M. Khantimerov, P. N. Togulev, E. F. Kukovitsky, N. M. Lyadov, and N. M. Suleimanov Copyright © 2016 S. M. Khantimerov et al. All rights reserved. Determining the Surfactant Consistent with Concrete in order to Achieve the Maximum Possible Dispersion of Multiwalled Carbon Nanotubes in Keeping the Plain Concrete Properties Thu, 27 Oct 2016 12:43:47 +0000 A new surfactant combination compatible with concrete formulation is proposed to avoid unwanted air bubbles created during mixing process in the absence of a defoamer and to achieve the uniform and the maximum possible dispersion of multiwalled carbon nanotubes (MWCNTs) in water and subsequently in concrete. To achieve this goal, three steps have been defined: (1) concrete was made with different types and amount of surfactants containing a constant amount of MWCNTs (0.05 wt%) and the air bubbles were eliminated with a proper defoamer. (2) Finding a compatible surfactant with concrete compositions and eliminating unwanted air bubbles in the absence of a common defoamer are of fundamental importance to significantly increase concrete mechanical properties. In this step, the results showed that the polycarboxylate superplasticizer (SP-C) (as a compatible surfactant) dispersed MWCNTs worse than SDS/DTAB but unwanted air bubbles were removed, so the defoamer can be omitted in the mixing process. (3) To solve the problem, a new compatible surfactant composition was developed and different ratios of surfactants were tested and evaluated by means of performance criteria mentioned above. The results showed that the new surfactant composition (SDS and SP-C) can disperse MWCNTs around 24% more efficiently than the other surfactant compositions. Mostafa Adresi, Abolfazl Hassani, Soheila Javadian, and Jean-Marc Tulliani Copyright © 2016 Mostafa Adresi et al. All rights reserved. Influence of Physicochemical Aspects of Substratum Nanosurface on Bacterial Attachment for Bone Implant Applications Mon, 24 Oct 2016 09:20:13 +0000 Biofilm formation on implant materials is responsible for periprosthetic infections. Bacterial attachment is important as the first stage in biofilm formation. It is meaningful to understand the influence of nanostructured surface on bacterial attachment. This review discusses the influence of physicochemical aspects of substratum nanosurface on bacterial attachment. Kun Mediaswanti Copyright © 2016 Kun Mediaswanti. All rights reserved. The Repulsive Casimir Force with Metallic Ellipsoid Structure Sun, 23 Oct 2016 12:14:40 +0000 We propose a new structure, one plate with a hole above the ellipsoid and the other plate with a hole below the ellipsoid, to obtain a repulsive Casimir force. The force was obtained numerically by using the in-house FDTD method, based on Maxwell’s stress tensor and harmonic expansion. The code can be verified by calculating the force of a perfect-metal ellipsoid centered above a perfect-metal plate with a hole. Our numerical method can effectively simulate the Casimir force by reducing the total simulated time. The further numerical results of realistic dielectric material immersing in fluids or adding other plates above the ellipsoid are also presented. It is not surprising to find that the larger differences can be achieved by varying the parameters such as the center-center separation, medium immersed, and the dielectric material of the structure. Thus, it is possible to tune these parameters relatively in the realistic microelectromechanical systems to overcome stiction and friction problems. Yujuan Hu, Ruo Sun, Zhixiang Huang, and Xianliang Wu Copyright © 2016 Yujuan Hu et al. All rights reserved. Synthesis and Modeling of Temperature Distribution For Nanoparticles Produced Using Nd:YAG Lasers Wed, 05 Oct 2016 10:48:25 +0000 Nanosecond pulses of Nd:YAG laser were employed to produce silver and silicon nanoparticles by laser ablation process in liquid. Two Nd:YAG laser systems of 6 and 10 nanoseconds pulse duration with variable laser energy in the range 700–760 mJ were employed. Morphological investigation using AFM and TEM reveals the formation of silver and silicon nanoparticles with uniform size distribution. It is found that mean nanoparticles sizes of 50 and 70 nm for silver and silicon, respectively, are produced under similar laser parameters. Moreover, theoretical model was used to estimate the temperature distributions for both silver and silicon nanoparticles. It is also found that the maximum temperature of about 50 k K° and 70 k K° for silver and silicon nanoparticles, respectively, is generated when Nd:YAG of 10 ns is used to prepare nanoparticles. Zeta potential measurements reveal that silver nanoparticles are more stable than those of silicon prepared by similar conditions. Mu’ataz S. Hassan, Ziad A. Taha, and Bassam G. Rasheed Copyright © 2016 Mu’ataz S. Hassan et al. All rights reserved.