Journal of Oncology

Journal of Oncology / 2008 / Article

Research Article | Open Access

Volume 2008 |Article ID 285374 | https://doi.org/10.1155/2008/285374

Sang Koo Lee, Min Seon Park, Myeong Jin Nam, "Aspirin Has Antitumor Effects via Expression of Calpain Gene in Cervical Cancer Cells", Journal of Oncology, vol. 2008, Article ID 285374, 5 pages, 2008. https://doi.org/10.1155/2008/285374

Aspirin Has Antitumor Effects via Expression of Calpain Gene in Cervical Cancer Cells

Academic Editor: Krešimir Pavelić
Received09 Jun 2008
Revised17 Jul 2008
Accepted22 Jul 2008
Published29 Sep 2008

Abstract

Aspirin and other nonsteroidal anti-inflammatory drugs show efficacy in the prevention of cancers. It is known that they can inhibit cyclooxygenases, and some studies have shown that they can induce apoptosis. Our objective in this study was to investigate the mechanism by which aspirin exerts its apoptosis effects in human cervical cancer HeLa cells. The effect of aspirin on the gene expression was studied by differential mRNA display RT-PCR. Among the isolated genes, mu-type calpain gene was upregulated by aspirin treatment. To examine whether calpain mediates the antitumor effects, HeLa cells were stably transfected with the mammalian expression vector pCR3.1 containing mu-type calpain cDNA (pCRCAL/HeLa), and tumor formations were measured in nude mice. When tumor burden was measured by day 49, HeLa cells and pCR/HeLa cells (vector control) produced tumors of 2126  and 1638  , respectively, while pCRCAL/HeLa cells produced markedly smaller tumor of 434  in volume. The caspase-3 activity was markedly elevated in pCRCAL/HeLa cells. The increased activity levels of caspase-3 in pCRCAL/HeLa cells, in parallel with the decreased tumor formation, suggest a correlation between caspase-3 activity and calpain protein. Therefore, we conclude that aspirin-induced calpain mediates an antitumor effect via caspase-3 in cervical cancer cells.

1. Introduction

Aspirin and other agents characterized as nonsteroidal anti-inflammatory drugs (NSAIDs) are designed primarily to decrease pain and inflammation. The molecular basis for actions of NSAIDs is believed to be their ability to inhibit cyclooxygenase (COX) activity and block the production of prostaglandins [1]. Among NSAIDs, aspirin and sulindac can prevent the development of colon cancer and act as an anti-inflammatory agent by their inhibition of prostaglandin synthesis [2].

Cancer of the uterine cervix is the second leading cause of death from cancer in women worldwide and also the most prevalent gynecological malignancy in Korea [3]. We investigated whether aspirin induced apoptosis in human cervical cancer HeLa cells. To investigate the mechanism by which aspirin exerts its apoptosis effects, the effect of aspirin on the gene expression was studied by differential mRNA display RT-PCR (DD RT-PCR). Employing DD RT-PCR methods, we identified aspirin-responsive gene and mu-type calpain, which was confirmed by real-time quantitative PCR.

Calpain is known to possess the proteoglycanase activity in vitro [4]. Calpain is ubiquitous family of -dependent neutral cysteine proteases. The two isoforms are classified according to their requirements: mu-type calpain and m-type calpain require micromolar and millimolar concentrations of for activation, respectively. Growing evidence suggested that calpain may play a central role in the execution of apoptosis via modulation of caspase-3 activity in glucocorticoid-treated and irradiated thymocytes, neuronal cells exposed to UV, or MCF-7 breast cancer cells treated with β-lapachone [57].

Further progress in cancer prevention would depend on understanding the mechanisms through which aspirin exerts molecular action. However, the molecular mechanisms through which aspirin alters colonic tumorigenesis are unknown. In this report, we describe a potential mechanism by which aspirin induces apoptosis in human cervical cancer cells. To examine whether mu-type calpain mediates antitumor effects in HeLa cells, HeLa cells were stably transfected with mu-type calpain cDNA. Tumor formation and caspase-3 activity of stably transfected cells were measured in nude mice. In this paper, we suggest that aspirin has an antitumor effect via the expression of mu-type calpain gene in cervical cancer cells.

2. Methods

2.1. Apoptosis Analysis

Human cervical cancer cells, HeLa, were plated in a 24-well plate at a density of  cells/well and treated with various doses of aspirin. To detect an apoptotic body, cells were stained with Hoechst 33342 dye and assessed for morphological signs of apoptosis. The proportion of cells in G0/G1, S, and G2/M was determined by flow cytometric analysis of DNA content (Becton Dickinson, Peterson, NJ, USA). Cell suspension was stained with propidium iodide. DNA histograms were analyzed using CELL QUEST software to evaluate cell cycle compartments.

2.2. Differential mRNA Display RT-PCR and Cloning

Total RNA was extracted from cells with TRizol reagent (Invitrogen, Carlsbad, Calif, USA), following the protocol that was provided. Cell monolayers were washed with PBS, and 1 mL of TRizol/  cells with 4 units of RNase inhibitor were added. For each sample, 2 μg of RNA were treated with DNase l (Roche, Basel, Switzerland) at for 30 minutes to remove contaminating DNA. One-base-anchored oligo-dT primers were used to reverse transcribed total RNA into first-strand cDNA, which were amplified subsequently by PCR using the arbitrary upstream primers. PCR products were labeled with 2 μCi of α[ ]dCTP (Amersham, Arlington, Ill, USA), and analyzed on a 6% polyacrylamide-urea gel. The cDNA bands that were unique to control or aspirin-treated cells were cut out of the gel, eluted, and reamplified by PCR. The candidate cDNA was cloned into pGEM-T vector (Promega, Madison, WI, USA). Plasmid with insert was purified and sequenced after performing PCR reactions.

2.3. Real-time Quantitative PCR

We relied on the TaqMan assay (Perkin-Elmer model 7700; Foster City, CA, USA) to quantitate the amount of calpain mRNA. The forward and reverse primers and the FAM-tagged probe used for the mu-type calpain gene in the assay were -GGATGTCATTCCGAGACT, -CTCGTAGACCGCGAAG, and -6FAM-TCTGCAACCTCACACCCGAC-TAMRA, respectively. The forward and reverse primers and FAM-tagged probe used for the ß-actin gene were -AACTTGAGATGTATGAAGGCTTTTGG, -TTTTTTTTTTTTTTTTTTTTTTTTTTTTTAAG, and -6FAM-CAACTGGTCTCAAGTCAGTGTACAGGTAAGCCCT-TAMRA, respectively. To measure the relative abundance of the calpain gene in any given RNA sample, the amplification value derived using the calpain sequence was divided by the amplification value using the ß-actin sequence.

2.4. Transfection of Calpain cDNA and Cell Growth Assay

The mu-type calpain cDNA was retrieved with the following primers: forward -AGGATGTCGGAGGAGA and reverse -CCAGTACACAAGTCCCT. PCR reaction products were cloned into pCR3.1 vector (Invitrogen). The vector pCR or recombinant pCRCAL was stably transfected into HeLa cells by liposome. Control, vector-transfected (pCR/HeLa), and calpain-transfected cells (pCRCAL/HeLa) were counted by the trypan blue exclusion assay and Coulter counter (Coulter Corporation, FL, USA) for measuring stably transfected cell growth. Cell number was presented as the five experiments.

2.5. Enzymatic Assay for Caspase-3 Activity

Cells ( ) were plated in cell culture dishes (100 mm) and allowed to attach for 48 hours under cell culture conditions. Then the cells were treated and the activity of caspase-3 was measured using the fluorogenic enzyme substrates, z-DEVD-AFC (Molecular Probes, Eugene, Ore, USA). Samples were read in a fluorometer equipped with a 400 nm excitation filter and 505 nm emission filter. Enzyme activity was expressed as relative fluorescence units/mg of protein. The arbitrary values were presented as the five experiments.

2.6. Tumorigenicity

Balb/c nu/nu mice, 4–6 weeks of age, were acclimated and caged in groups of five. HeLa, pCR/HeLa, and pCRCAL/HeLa cells ( ) were injected subcutaneously into the right flank of the nude mouse. The mean tumor diameter was measured by dial caliper, and the volume was calculated by the formula: . Mean values of five mice/group are shown. The experiment was repeated three times and performed according to the guidelines of the Animal Experimental Committee, National Institute of Health, South Korea. Statistical calculations were performed using the Microsoft Excel 97 program (1998; Microsoft Co., Redmond ,Wash, USA) to estimate -value. The significance level ( -value) is determined using the Student’s -test. Probability values <.05 were considered significant.

3. Results

3.1. Apoptosis in Aspirin-Treated HeLa Cells

We performed DNA synthesis assay to study the effects of aspirin on HeLa cells. HeLa cells were treated in 1, 2, or 3 mM aspirin. Aspirin inhibited growth of cervical cancer cells in a time- and concentration-dependent manner (data not shown). HeLa cells were then assessed for apoptosis. Aspirin-induced morphological changes were evident in a concentration-dependent manner (see Figure 1). Cells treated with aspirin became sparse, long squared, and detached from the dishes. Cell number was also decreased. Apoptotic bodies (indicated by white arrows in Figure 1) were shown after aspirin treatment. To show apoptosis in the cells treated with aspirin, flow cytometry analysis was performed. The population of sub-G1 phase was changed from 1.2 to 18.9% in cells treated with 1 mM aspirin for 48 hours. That of sub-G1 phase at 2 and 3 mM was in the similar range.

3.2. Identification of Calpain Gene in Aspirin-Treated HeLa Cells

After HeLa cells were treated with aspirin for 48 hours, we performed differential display RT-PCR and selected differentially expressed genes, which was expressed with absolute difference between control and aspirin-treated cells. The genes were identified with DNA sequencing. One of the upregulated genes is mu-type calpain. Expression of calpain mRNA was confirmed by real-time quantitative PCR (see Figure 2). Calpain gene was highly expressed in aspirin-treated HeLa cells in a concentration-dependent manner. Calpain gene was upregulated by 4.4, 6, and 8.8 folds in the 1, 2, and 3 mM aspirin-treated HeLa cells, respectively.

3.3. Tumorigenicity of Calpain Gene Product

We have cloned mu-type calpain cDNA into pCR3.1 vector. The vector pCR or recombinant pCRCAL was stably transfected into HeLa cells (pCR/HeLa cell or pCRCAL/HeLa cell). To assess whether change of cell biology was caused after gene transfection, we measured cell proliferation. pCRCAL/HeLa cells appeared to have a markedly different growth pattern compared with HeLa cells and pCR/HeLa cells (see Figure 3(a)). To establish a relationship between calpain and caspase-3, caspase-3 activities were measured. As shown in Figure 3(b), caspase-3 activity was elevated in pCRCAL/HeLa cells. The markedly increased activity levels of caspase-3 in pCRCAL/HeLa cells suggest a correlation of caspase-3 activity and calpain protein. In investigation of calpain role in the tumorigenicity, we evaluated tumor progression in nude mice. stably transfected cells were subcutaneously injected into the flank of the mouse. When tumor burden was measured by day 49, HeLa cells and pCR/HeLa cells produced tumors of and , respectively, while pCRCAL/HeLa cells produced markedly small tumor of in volume (see Figure 3(c)). The experiment was repeated three times with similar results. Tumor growth was reduced by calpain gene expression.

4. Discussion

We report that aspirin inhibited the proliferation of cervical adenocarcinoma cells in a time- and dose-dependent manner. This agrees with other studies showing that aspirin inhibited the proliferation of cancer cells [2, 4, 812]. Aspirin has antitumor effects in the colon through induction of quiescence and apoptosis [13]. Apoptosis was shown to be responsible for the cell growth inhibitory effects of aspirin in HT29 human colon carcinoma cells. Our morphological observation of nuclear condensation after aspirin treatment suggests that aspirin increases apoptosis in cervical cancer cells (see Figure 1). These results demonstrate that aspirin is an effective antitumor drug that induces apoptosis in cervical cancer cells.

A few molecular mechanisms of aspirin have been proposed. One of these mechanisms is COX-independent [14, 15]. It is well known that activation of p53 expression is involved [16]. In this study, we have shown that aspirin induces the calpain gene and calpain gene activation inhibits the tumor formation. These results support the previous findings that aspirin induces apoptosis by the regulation of bcl-2 and caspase-3 in human cervical cancer cells [3, 17]. Therefore, aspirin might play roles in the inhibition of tumor formation through activation of calpain gene.

Calpain is a calcium-dependent cysteine protease that is implicated in calcium-dependent cell death [17, 18]. Calpain plays an essential role in apoptotic commitment by cleaving Bax and generating the Bax/p18 fragment, which in turn mediates cytochrome c release and initiates the apoptotic execution [19]. Calpain activation plays a critical role in cancer cell adhesion and motility [20]; and calpain could be related to a therapeutic strategy targeting multiple disease states [2124]. In our experiments, caspase-3 activity was increased in the calpain-transfected HeLa cells, suggesting a correlation of calpain and caspase-3 (see Figure 3(b)). The involvement of caspase-3 in the calpain action is in agreement with the results in the photoreceptor cell, where calpain executes apoptosis via modulation of caspase-3 activity [25]. Accompanying the increased caspase-3 activity, tumor growth was reduced by calpain gene expression, leading to the role of calpain as an apoptosis mediator (see Figure 3(c)). Fushimi et al. have analyzed calpain release from cultured chondrocytes stimulated by a proinflammatory cytokine, tumor necrosis factor-α (TNF-α) [4]. The effects of NSAIDs on calpain release were also examined. However, their results were in contrast to our expectation. NSAIDs examined (aspirin, loxoprofen-SRS, diclofenac sodium, indomethacin, and NS398) potently inhibited TNF-α-induced release of calpain [4]. In addition, they showed that alone failed to stimulate, but it significantly augmented the release of calpain in the presence of 1 ng/mL TNF-α in HCS-2/8 cells. Moreover, inhibition of calpain release by an NSAID, loxoprofen-SRS, was significantly reversed by 100 nM . Therefore, further studies are necessary to clarify the relationship implicated in the aspirin treatment.

5. Conclusion

Aspirin causes growth inhibition of cervical cancer cells through activation of apoptosis. We suggest that aspirin may have cancer-preventing effects through calpain gene expression, which leads to caspase-3 activation.

References

  1. M. Oshima, J. E. Dinchuk, S. L. Kargman et al., “Suppression of intestinal polyposis in Apc?716 knockout mice by inhibition of cyclooxygenase 2 (COX-2),” Cell, vol. 87, no. 5, pp. 803–809, 1996. View at: Publisher Site | Google Scholar
  2. D. J. E. Elder, A. Hague, D. J. Hicks, and C. Paraskeva, “Differential growth inhibition by the aspirin metabolite salicylate in human colorectal tumor cell lines: enhanced apoptosis in carcinoma and in vitro-transformed adenoma relative to adenoma cell lines,” Cancer Research, vol. 56, no. 10, pp. 2273–2276, 1996. View at: Google Scholar
  3. K. Y. Kim, J. Y. Seol, G.-A. Jeon, and M. J. Nam, “The combined treatment of aspirin and radiation induces apoptosis by the regulation of bcl-2 and caspase-3 in human cervical cancer cell,” Cancer Letters, vol. 189, no. 2, pp. 157–166, 2003. View at: Publisher Site | Google Scholar
  4. K. Fushimi, S. Nakashima, Y. Banno, A. Akaike, M. Takigawa, and K. Shimizu, “Implication of prostaglandin E2 in TNF-α-induced release of m-calpain from HCS-2/8 chondrocytes. Inhibition of m-calpain release by NSAIDs,” Osteoarthritis and Cartilage, vol. 12, no. 11, pp. 895–903, 2004. View at: Publisher Site | Google Scholar
  5. A. T. McCollum, P. Nasr, and S. Estus, “Calpain activates caspase-3 during UV-induced neuronal death but only calpain is necessary for death,” Journal of Neurochemistry, vol. 82, no. 5, pp. 1208–1220, 2002. View at: Publisher Site | Google Scholar
  6. J. J. Pink, S. Wuerzberger-Davis, C. Tagliarino et al., “Activation of a cysteine protease in MCF-7 and T47D breast cancer cells during ß-lapachone-mediated apoptosis,” Experimental Cell Research, vol. 255, no. 2, pp. 144–155, 2000. View at: Publisher Site | Google Scholar
  7. M. K. Squier and J. J. Cohen, “Calpain, an upstream regulator of thymocyte apoptosis,” The Journal of Immunology, vol. 158, no. 8, pp. 3690–3697, 1997. View at: Google Scholar
  8. T. A. Chan, P. J. Morin, B. Vogelstein, and K. W. Kinzler, “Mechanisms underlying nonsteroidal antiinflammatory drug-mediated apoptosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 2, pp. 681–686, 1998. View at: Publisher Site | Google Scholar
  9. S. J. Shiff, M. I. Koutsos, L. Qiao, and B. Rigas, “Nonsteroidal antiinflammatory drugs inhibit the proliferation of colon adenocarcinoma cells: effects on cell cycle and apoptosis,” Experimental Cell Research, vol. 222, no. 1, pp. 179–188, 1996. View at: Publisher Site | Google Scholar
  10. Y. Yamamoto, M.-J. Yin, K.-M. Lin, and R. B. Gaynor, “Sulindac inhibits activation of the NF-κB pathway,” The Journal of Biological Chemistry, vol. 274, no. 38, pp. 27307–27314, 1999. View at: Publisher Site | Google Scholar
  11. P.-C. Chiang, C.-L. Chien, S.-L. Pan et al., “Induction of endoplasmic reticulum stress and apoptosis by a marine prostanoid in human hepatocellular carcinoma,” Journal of Hepatology, vol. 43, no. 4, pp. 679–686, 2005. View at: Publisher Site | Google Scholar
  12. P.-C. Chiang, F.-L. Kung, D.-M. Huang et al., “Induction of Fas clustering and apoptosis by coral prostanoid in human hormone-resistant prostate cancer cells,” European Journal of Pharmacology, vol. 542, no. 1–3, pp. 22–30, 2006. View at: Publisher Site | Google Scholar
  13. H. Tanaka, H. Arakawa, T. Yamaguchi et al., “A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage,” Nature, vol. 404, no. 6773, pp. 42–49, 2000. View at: Publisher Site | Google Scholar
  14. E. Eklou-Kalonji, M. Andriamihaja, P. Reinaud et al., “Prostaglandin-independent effects of aspirin on cell cycle and putrescine synthesis in human colon carcinoma cells,” Canadian Journal of Physiology and Pharmacology, vol. 81, no. 5, pp. 443–450, 2003. View at: Publisher Site | Google Scholar
  15. A. Goel, D. K. Chang, L. Ricciardiello, C. Gasche, and C. R. Boland, “A novel mechanism for aspirin-mediated growth inhibition of human colon cancer cells,” Clinical Cancer Research, vol. 9, no. 1, pp. 383–390, 2003. View at: Google Scholar
  16. G. A. Piazza, A. K. Rahm, T. S. Finn et al., “Apoptosis primarily accounts for the growth-inhibitory properties of sulindac metabolites and involves a mechanism that is independent of cyclooxygenase inhibition, cell cycle arrest, and p53 induction,” Cancer Research, vol. 57, no. 12, pp. 2452–2459, 1997. View at: Google Scholar
  17. B. J. Perrin and A. Huttenlocher, “Calpain,” The International Journal of Biochemistry & Cell Biology, vol. 34, no. 7, pp. 722–725, 2002. View at: Publisher Site | Google Scholar
  18. C. Tagliarino, J. J. Pink, K. E. Reinicke, S. M. Simmers, S. M. Wuerzberger-Davis, and D. A. Boothman, “μ-calpain activation in β-lapachone-mediated apoptosis,” Cancer Biology & Therapy, vol. 2, no. 2, pp. 141–152, 2003. View at: Google Scholar
  19. G. Gao and Q. P. Dou, “N-terminal cleavage of Bax by calpain generates a potent proapoptotic 18-kDa fragment that promotes Bcl-2-independent cytochrome C release and apoptotic cell death,” Journal of Cellular Biochemistry, vol. 80, no. 1, pp. 53–72, 2000. View at: Publisher Site | Google Scholar
  20. R. S. Sawhney, M. M. Cookson, Y. Omar, J. Hauser, and M. G. Brattain, “Integrin α2-mediated ERK and calpain activation play a critical role in cell adhesion and motility via focal adhesion kinase signaling: identification of a novel signaling pathway,” The Journal of Biological Chemistry, vol. 281, no. 13, pp. 8497–8510, 2006. View at: Publisher Site | Google Scholar
  21. N. O. Carragher, “Calpain inhibition: a therapeutic strategy targeting multiple disease states,” Current Pharmaceutical Design, vol. 12, no. 5, pp. 615–638, 2006. View at: Publisher Site | Google Scholar
  22. N. O. Carragher, “Assaying calpain activity,” Methods in Molecular Biology, vol. 370, pp. 109–120, 2007. View at: Google Scholar
  23. N. O. Carragher, S. M. Walker, L. A. Scott Carragher et al., “Calpain 2 and Src dependence distinguishes mesenchymal and amoeboid modes of tumour cell invasion: a link to integrin function,” Oncogene, vol. 25, no. 42, pp. 5726–5740, 2006. View at: Publisher Site | Google Scholar
  24. Y. Calle, N. O. Carragher, A. J. Thrasher, and G. E. Jones, “Inhibition of calpain stabilises podosomes and impairs dendritic cell motility,” Journal of Cell Science, vol. 119, no. 11, pp. 2375–2385, 2006. View at: Publisher Site | Google Scholar
  25. A. K. Sharma and B. Rohrer, “Calcium-induced calpain mediates apoptosis via caspase-3 in a mouse photoreceptor cell line,” The Journal of Biological Chemistry, vol. 279, no. 34, pp. 35564–35572, 2004. View at: Publisher Site | Google Scholar

Copyright © 2008 Sang Koo Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Download other formatsMore
 Order printed copiesOrder
Views1079
Downloads569
Citations

Related articles

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.