Table of Contents Author Guidelines Submit a Manuscript
Journal of Oncology
Volume 2010 (2010), Article ID 135632, 15 pages
http://dx.doi.org/10.1155/2010/135632
Review Article

MicroRNA as a Novel Modulator in Head and Neck Squamous Carcinoma

1Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan
2Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 11217, Taiwan
3Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
4Institute of Oral Biology and Biomaterial Science, Chung Shan Medical University, Taichung 40201, Taiwan
5Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei 11221, Taiwan
6Division of Oral and Maxillofacial Surgery, Department of Stomatology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
7Institute of Anatomy and Cell Biology, National Yang-Ming University, Taipei 11221, Taiwan
8School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
9Otolaryngology & Head and Neck Surgery, Department of Otolaryngology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
10Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan
11Cancer Center, Taipei Veterans General Hospital, Taipei 11217, Taiwan

Received 18 October 2010; Accepted 30 December 2010

Academic Editor: Paul Magnus Schneider

Copyright © 2010 Li-Hsin Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Jemal, R. C. Tiwari, T. Murray et al., “Cancer Statistics, 2004,” CA: A Cancer Journal for Clinicians, vol. 54, no. 1, pp. 8–29, 2004. View at Google Scholar · View at Scopus
  2. A. Jemal, T. Murray, E. Ward et al., “Cancer statistics, 2005,” CA: A Cancer Journal for Clinicians, vol. 55, no. 1, pp. 10–30, 2005. View at Google Scholar · View at Scopus
  3. A. Jemal, R. Siegel, E. Ward et al., “Cancer statistics, 2006,” CA: A Cancer Journal for Clinicians, vol. 56, no. 2, pp. 106–130, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Jemal, R. Siegel, E. Ward, T. Murray, J. Xu, and M. J. Thun, “Cancer statistics, 2007,” CA: A Cancer Journal for Clinicians, vol. 57, no. 1, pp. 43–66, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Jemal, R. Siegel, E. Ward et al., “Cancer statistics, 2008,” CA Cancer Journal for Clinicians, vol. 58, no. 2, pp. 71–96, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, and M. J. Thun, “Cancer statistics, 2009,” CA Cancer Journal for Clinicians, vol. 59, no. 4, pp. 225–249, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. J. Chen, J. T. C. Chang, C. T. Liao et al., “Head and neck cancer in the betel quid chewing area: recent advances in molecular carcinogenesis,” Cancer Science, vol. 99, no. 8, pp. 1507–1514, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. K. A. Gold, H. Y. Lee, and E. S. Kim, “Targeted therapies in squamous cell carcinoma of the head and neck,” Cancer, vol. 115, no. 5, pp. 922–935, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Y. Choi and H. Kahyo, “Effect of cigarette smoking and alcohol consumption in the aetiology of cancer of the oral cavity, pharynx and larynx,” International Journal of Epidemiology, vol. 20, no. 4, pp. 878–885, 1991. View at Google Scholar · View at Scopus
  10. A. Mashberg, P. Boffetta, R. Winkelman, and L. Garfinkel, “Tobacco smoking, alcohol drinking, and cancer of the oral cavity and oropharynx among U.S. Veterans,” Cancer, vol. 72, no. 4, pp. 1369–1375, 1993. View at Google Scholar · View at Scopus
  11. G. Menvielle, D. Luce, P. Goldberg, and A. Leclerc, “Smoking, alcohol drinking, occupational exposures and social inequalities in hypopharyngeal and laryngeal cancer,” International Journal of Epidemiology, vol. 33, no. 4, pp. 799–806, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. C. Ko, T. A. Chiang, S. J. Chang, and S. F. Hsieh, “Prevalence of betel quid chewing habit in Taiwan and related sociodemographic factors,” Journal of Oral Pathology and Medicine, vol. 21, no. 6, pp. 261–264, 1992. View at Google Scholar · View at Scopus
  13. W. L. Lo, S. Y. Kao, L. Y. Chi, Y. K. Wong, and R. C. S. Chang, “Outcomes of oral squamous cell carcinoma in Taiwan after surgical therapy: factors affecting survival,” Journal of Oral and Maxillofacial Surgery, vol. 61, no. 7, pp. 751–758, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. K. C. Lai and T. C. Lee, “Genetic damage in cultured human keratinocytes stressed by long-term exposure to areca nut extracts,” Mutation Research, vol. 599, no. 1-2, pp. 66–75, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. J. H. Jeng, M. C. Chang, and L. J. Hahn, “Role of areca nut in betel quid-associated chemical carcinogenesis: current awareness and future perspectives,” Oral Oncology, vol. 37, no. 6, pp. 477–492, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. L. P. Shirname, M. M. Menon, J. Nair, and S. V. Bhide, “Correlation of mutagenicity and tumorigenicity of betel quid and its ingredients,” Nutrition and Cancer, vol. 5, no. 2, pp. 87–91, 1983. View at Google Scholar · View at Scopus
  17. P. H. Lee, M. C. Chang, W. H. Chang et al., “Prolonged exposure to arecoline arrested human KB epithelial cell growth: regulatory mechanisms of cell cycle and apoptosis,” Toxicology, vol. 220, no. 2-3, pp. 81–89, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Argiris, M. V. Karamouzis, D. Raben, and R. L. Ferris, “Head and neck cancer,” The Lancet, vol. 371, no. 9625, pp. 1695–1709, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Brockstein, D. J. Haraf, A. W. Rademaker et al., “Patterns of failure, prognostic factors and survival in locoregionally advanced head and neck cancer treated with concomitant chemoradiotherapy: a 9-year, 337-patient, multi-institutional experience,” Annals of Oncology, vol. 15, no. 8, pp. 1179–1186, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. H. M. Chen, M. Y. P. Kuo, K. H. Lin, C. Y. Lin, and C. P. Chiang, “Expression of cyclin A is related to progression of oral squamous cell carcinoma in Taiwan,” Oral Oncology, vol. 39, no. 5, pp. 476–482, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Y. P. Kuo, C. Y. Lin, L. J. Hahn, S. J. Cheng, and C. P. Chiang, “Expression of cyclin D1 is correlated with poor prognosis in patients with areca quid chewing-related oral squamous cell carcinomas in Taiwan,” Journal of Oral Pathology and Medicine, vol. 28, no. 4, pp. 165–169, 1999. View at Google Scholar · View at Scopus
  22. M. Y. P. Kuo, H. Y. Hsu, S. H. Kok et al., “Prognostic role of p27 expression in oral squamous cell carcinoma in Taiwan,” Oral Oncology, vol. 38, no. 2, pp. 172–178, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. J. S. Huang, T. J. Ho, C. P. Chiang, S. H. Kok, Y. S. Kuo, and M. Y. P. Kuo, “MDM2 expression in areca quid chewing-associated oral squamous cell carcinomas in Taiwan,” Journal of Oral Pathology and Medicine, vol. 30, no. 1, pp. 53–58, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Y. Liu, C. Y. Yen, S. C. Yang, W. F. Chiang, and K. W. Chang, “Overexpression of Rac-1 small GTPase binding protein in oral squamous cell carcinoma,” Journal of Oral and Maxillofacial Surgery, vol. 62, no. 6, pp. 702–707, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. T. J. Ho, C. P. Chiang, C. Y. Hong, S. H. Kok, Y. S. Kuo, and M. Yen-Ping Kuo, “Induction of the c-jun protooncogene expression by areca nut extract and arecoline on oral mucosal fibroblasts,” Oral Oncology, vol. 36, no. 5, pp. 432–436, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. W. C. Tsai, S. T. Tsai, J. Y. Ko et al., “The mRNA profile of genes in betel quid chewing oral cancer patients,” Oral Oncology, vol. 40, no. 4, pp. 418–426, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Y. Lin, H. C. Hung, R. C. Kuo, C. P. Chiang, and M. Y. P. Kuo, “Survivin expression predicts poorer prognosis in patients with areca quid chewing-related oral squamous cell carcinoma in Taiwan,” Oral Oncology, vol. 41, no. 6, pp. 645–654, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. I. H. Chen, J. T. Chang, C. T. Liao, H. M. Wang, L. L. Hsieh, and A. J. Cheng, “Prognostic significance of EGFR and Her-2 in oral cavity cancer in betel quid prevalent area,” British Journal of Cancer, vol. 89, no. 4, pp. 681–686, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Garzon, G. A. Calin, and C. M. Croce, “MicroRNAs in cancer,” Annual Review of Medicine, vol. 60, pp. 167–179, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Kato and F. J. Slack, “MicroRNAs: small molecules with big roles—C. elegans to human cancer,” Biology of the Cell, vol. 100, no. 2, pp. 71–81, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. M. S. Nicoloso, R. Spizzo, M. Shimizu, S. Rossi, and G. A. Calin, “MicroRNAs—the micro steering wheel of tumour metastases,” Nature Reviews Cancer, vol. 9, no. 4, pp. 293–302, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. U. A. Ørom, F. C. Nielsen, and A. H. Lund, “MicroRNA-10a binds the 5UTR of ribosomal protein mRNAs and enhances their translation,” Molecular Cell, vol. 30, no. 4, pp. 460–471, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Vasudevan, Y. Tong, and J. A. Steitz, “Switching from repression to activation: microRNAs can up-regulate translation,” Science, vol. 318, no. 5858, pp. 1931–1934, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. M. V. Iorio, M. Ferracin, C. G. Liu et al., “MicroRNA gene expression deregulation in human breast cancer,” Cancer Research, vol. 65, no. 16, pp. 7065–7070, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. G. A. Calin, C. D. Dumitru, M. Shimizu et al., “Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 24, pp. 15524–15529, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Xi, R. Shalgi, O. Fodstad, Y. Pilpel, and J. Ju, “Differentially regulated micro-RNAs and actively translated messenger RNA transcripts by tumor suppressor p53 in colon cancer,” Clinical Cancer Research, vol. 12, no. 7 I, pp. 2014–2024, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Shin, H. J. Cha, E. M. Lee et al., “MicroRNAs are significantly influenced by p53 and radiation in HCT116 human colon carcinoma cells,” International Journal of Oncology, vol. 34, no. 6, pp. 1645–1652, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. L. He, X. He, L. P. Lim et al., “A microRNA component of the p53 tumour suppressor network,” Nature, vol. 447, no. 7148, pp. 1130–1134, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. X. Liu, Z. Chen, J. Yu, J. Xia, and X. Zhou, “MicroRNA profiling and head and neck cancer,” Comparative and Functional Genomics, vol. 2009, Article ID 837514, 11 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. N. Tran, C. J. O'Brien, J. Clark, and B. Rose, “Potential role of micro-RNAs in head and neck tumorigenesis,” Head and Neck, vol. 32, no. 8, pp. 1099–1111, 2010. View at Publisher · View at Google Scholar
  41. L. Hong, Y. Han, H. Zhang et al., “The prognostic and chemotherapeutic value of miR-296 in esophageal squamous cell carcinoma,” Annals of Surgery, vol. 251, no. 6, pp. 1056–1063, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. X. B. Long, G. B. Sun, S. Hu et al., “Let-7a microrna functions as a potential tumor suppressor in human laryngeal cancer,” Oncology Reports, vol. 22, no. 5, pp. 1189–1195, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. X. Liu, L. Jiang, A. Wang, J. Yu, F. Shi, and X. Zhou, “MicroRNA-138 suppresses invasion and promotes apoptosis in head and neck squamous cell carcinoma cell lines,” Cancer Letters, vol. 286, no. 2, pp. 217–222, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. L. Jiang, X. Liu, A. Kolokythas et al., “Downregulation of the Rho GTPase signaling pathway is involved in the microRNA-138-mediated inhibition of cell migration and invasion in tongue squamous cell carcinoma,” International Journal of Cancer, vol. 127, no. 3, pp. 505–512, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Lee, X. Yang, Y. Huang et al., “Network modeling identifies molecular functions targeted by miR-204 to suppress head and neck tumor metastasis,” PLoS Computational Biology, vol. 6, no. 4, article e1000730, 2010. View at Publisher · View at Google Scholar
  46. K. M. Cai, X. L. Bao, X. H. Kong et al., “Hsa-miR-34c suppresses growth and invasion of human laryngeal carcinoma cells via targeting c-Met,” International Journal of Molecular Medicine, vol. 25, no. 4, pp. 565–571, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. L. Zhang, T. Dengy, X. Li et al., “microRNA-141 is involved in a nasopharyngeal carcinoma-related genes network,” Carcinogenesis, vol. 31, no. 4, pp. 559–566, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Ke, J. Pei, Z. Ni et al., “Putative tumor suppressor Lats2 induces apoptosis through downregulation of Bcl-2 and Bcl-x(L),” Experimental Cell Research, vol. 298, no. 2, pp. 329–338, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. N. Yabuta, N. Okada, A. Ito et al., “Lats2 is an essential mitotic regulator required for the coordination of cell division,” Journal of Biological Chemistry, vol. 282, no. 26, pp. 19259–19271, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. K. H. Lee, Y. G. Goan, M. Hsiao et al., “MicroRNA-373 (miR-373) post-transcriptionally regulates large tumor suppressor, homolog 2 (LATS2) and stimulates proliferation in human esophageal cancer,” Experimental Cell Research, vol. 315, no. 15, pp. 2529–2538, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. J. Li, H. Huang, L. Sun et al., “MiR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor,” Clinical Cancer Research, vol. 15, no. 12, pp. 3998–4008, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. Z. Lu, M. Liu, V. Stribinskis et al., “MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene,” Oncogene, vol. 27, no. 31, pp. 4373–4379, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. Hiyoshi, H. Kamohara, R. Karashima et al., “MicroRNA-21 regulates the proliferation and invasion in esophageal squamous cell carcinoma,” Clinical Cancer Research, vol. 15, no. 6, pp. 1915–1922, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. Y.-W. Chen, K.-H. Chen, P.-I. Huang et al., “Cucurbitacin I suppressed stem-like property and enhanced radiation-induced apoptosis in head and neck squamous carcinoma-derived CD44+ALDH1+ cells,” Molecular Cancer Therapeutics, vol. 9, no. 11, pp. 2879–2892, 2010. View at Publisher · View at Google Scholar
  55. K. H. Haider, N. M. Idris, H. W. Kim, R. P. H. Ahmed, J. Shujia, and M. Ashraf, “MicroRNA-21 is a key determinant in IL-11/Stat3 anti-apoptotic signalling pathway in preconditioning of skeletal myoblasts,” Cardiovascular Research, vol. 88, no. 1, pp. 168–178, 2010. View at Publisher · View at Google Scholar
  56. D. Iliopoulos, S. A. Jaeger, H. A. Hirsch, M. L. Bulyk, and K. Struhl, “STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer,” Molecular Cell, vol. 39, no. 4, pp. 493–506, 2010. View at Publisher · View at Google Scholar
  57. K. W. Chang, C. J. Liu, T. H. Chu et al., “Association between high miR-211 microRNA expression and the poor prognosis of oral carcinoma,” Journal of Dental Research, vol. 87, no. 11, pp. 1063–1068, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. X. Liu, J. Yu, L. Jiang et al., “MicroRNA-222 regulates cell invasion by targeting matrix metalloproteinase 1 (MMP1) and manganese superoxide dismutase 2 (SOD2) in tongue squamous cell carcinoma cell lines,” Cancer Genomics and Proteomics, vol. 6, no. 3, pp. 134–139, 2009. View at Google Scholar · View at Scopus
  59. Q. Jiang, M. G. Feng, and Y. Y. Mo, “Systematic validation of predicted microRNAs for cyclin D1,” BMC Cancer, vol. 9, article 194, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. E. E. W. Cohen, H. Zhu, M. W. Lingen et al., “A feed-forward loop involving protein kinase Cα and microRNAs regulates tumor cell cycle,” Cancer Research, vol. 69, no. 1, pp. 65–74, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. T. S. Wong, X. B. Liu, B. Y. H. Wong, R. W. M. Ng, A. P. W. Yuen, and W. I. Wei, “Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue,” Clinical Cancer Research, vol. 14, no. 9, pp. 2588–2592, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. B. J. Henson, S. Bhattacharjee, D. M. O'Dee, E. Feingold, and S. M. Gollin, “Decreased expression of miR-125b and miR-100 in oral cancer cells contributes to malignancy,” Genes Chromosomes and Cancer, vol. 48, no. 7, pp. 569–582, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. F. Wu, S. Zhu, Y. Ding, W. T. Beck, and Y. Y. Mo, “MicroRNA-mediated regulation of Ubc9 expression in cancer cells,” Clinical Cancer Research, vol. 15, no. 5, pp. 1550–1557, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. A. M. Lena, R. Shalom-Feuerstein, P. R. di Val Cervo et al., “miR-203 represses “stemness” by repressing ΔNp63,” Cell Death and Differentiation, vol. 15, no. 7, pp. 1187–1195, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. P. Silva, N. J. Slevin, P. Sloan et al., “Prognostic significance of tumor hypoxia inducible factor-1α expression for outcome after radiotherapy in oropharyngeal cancer,” International Journal of Radiation Oncology Biology Physics, vol. 72, no. 5, pp. 1551–1559, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. S. C. Winter, K. A. Shah, C. Han et al., “The relation between hypoxia-inducible factor (HIF)-1α and HIF-2α expression with anemia and outcome in surgically treated head and neck cancer,” Cancer, vol. 107, no. 4, pp. 757–766, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. N. J. P. Beasley, R. Leek, M. Alam et al., “Hypoxia-inducible factors HIF-1α and HIF-2α in head and neck cancer: relationship to tumor biology and treatment outcome in surgically resected patients,” Cancer Research, vol. 62, no. 9, pp. 2493–2497, 2002. View at Google Scholar · View at Scopus
  68. D. S.-S. Hsu, H.-Y. Lan, C.-H. Huang et al., “Regulation of excision repair cross-complementation group 1 by snail contributes to cisplatin resistance in head and neck cancer,” Clinical Cancer Research, vol. 16, no. 18, pp. 4561–4571, 2010. View at Publisher · View at Google Scholar
  69. M. H. Yang and K. J. Wu, “TWIST activation by hypoxia inducible factor-1 (HIF-1): implications in metastasis and development,” Cell Cycle, vol. 7, no. 14, pp. 2090–2096, 2008. View at Google Scholar · View at Scopus
  70. X. Huang, L. Ding, K. L. Bennewith et al., “Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation,” Molecular Cell, vol. 35, no. 6, pp. 856–867, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. H. E. Gee, C. Camps, F. M. Buffa et al., “hsa-mir-210 is a marker of tumor hypoxia and a prognostic factor in head and neck cancer,” Cancer, vol. 116, no. 9, pp. 2148–2158, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. C. J. Liu, S. Y. Kao, H. F. Tu, M. M. Tsai, K. W. Chang, and S. C. Lin, “Increase of microRNA miR-31 level in plasma could be a potential marker of oral cancer,” Oral Diseases, vol. 16, no. 4, pp. 360–364, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. C. J. Liu, M. M. Tsai, P. S. Hung et al., “miR-31 ablates expression of the HIF regulatory factor FIH to activate the HIF pathway in head and neck carcinoma,” Cancer Research, vol. 70, no. 4, pp. 1635–1644, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. C. Hebert, K. Norris, M. A. Scheper, N. Nikitakis, and J. J. Sauk, “High mobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma,” Molecular Cancer, vol. 6, article 5, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. J. P. Their, “Epithelial-mesenchymal transitions in tumor progression,” Nature Reviews Cancer, vol. 2, no. 6, pp. 442–454, 2002. View at Google Scholar · View at Scopus
  76. D. F. Higgins, K. Kimura, W. M. Bernhardt et al., “Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition,” Journal of Clinical Investigation, vol. 117, no. 12, pp. 3810–3820, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. E. W. Thompson, D. F. Newgreen, and D. Tarin, “Carcinoma invasion and metastasis: a role for epithelial-mesenchymal transition?” Cancer Research, vol. 65, no. 14, pp. 5991–5995, 2005. View at Google Scholar · View at Scopus
  78. J. P. Thiery and J. P. Sleeman, “Complex networks orchestrate epithelial-mesenchymal transitions,” Nature Reviews Molecular Cell Biology, vol. 7, no. 2, pp. 131–142, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Cano, M. A. Pérez-Moreno, I. Rodrigo et al., “The transcription factor Snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression,” Nature Cell Biology, vol. 2, no. 2, pp. 76–83, 2000. View at Publisher · View at Google Scholar · View at Scopus
  80. K. M. Hajra, D. Y. Chen, and E. R. Fearon, “The SLUG zinc-finger protein represses E-cadherin in breast cancer,” Cancer Research, vol. 62, no. 6, pp. 1613–1618, 2002. View at Google Scholar · View at Scopus
  81. J. Yang, S. A. Mani, J. L. Donaher et al., “Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis,” Cell, vol. 117, no. 7, pp. 927–939, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. M. L. Grooteclaes and S. M. Frisch, “Evidence for a function of CtBP in epithelial gene regulation and anoikis,” Oncogene, vol. 19, no. 33, pp. 3823–3828, 2000. View at Google Scholar · View at Scopus
  83. J. Comijn, G. Berx, P. Vermassen et al., “The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion,” Molecular Cell, vol. 7, no. 6, pp. 1267–1278, 2001. View at Publisher · View at Google Scholar · View at Scopus
  84. M. A. Pérez-Moreno, A. Locascio, I. Rodrigo et al., “A new role for E12/E47 in the repression of E-cadherin expression and epithelial-mesenchymal transitions,” Journal of Biological Chemistry, vol. 276, no. 29, pp. 27424–27431, 2001. View at Publisher · View at Google Scholar · View at Scopus
  85. M. H. Yang, S. Y. Chang, S. H. Chiou et al., “Overexpression of NBS1 induces epithelial-mesenchymal transition and co-expression of NBS1 and Snail predicts metastasis of head and neck cancer,” Oncogene, vol. 26, no. 10, pp. 1459–1467, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. C. T. Jordan, M. L. Guzman, and M. Noble, “Cancer stem cells,” New England Journal of Medicine, vol. 355, no. 12, pp. 1253–1261, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. M. E. Prince, R. Sivanandan, A. Kaczorowski et al., “Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 3, pp. 973–978, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. A. Okamoto, K. Chikamatsu, K. Sakakura, K. Hatsushika, G. Takahashi, and K. Masuyama, “Expansion and characterization of cancer stem-like cells in squamous cell carcinoma of the head and neck,” Oral Oncology, vol. 45, no. 7, pp. 633–639, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. Y. C. Chen, Y. W. Chen, H. S. Hsu et al., “Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer,” Biochemical and Biophysical Research Communications, vol. 385, no. 3, pp. 307–313, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. S. H. Chiou, C. C. Yu, C. Y. Huang et al., “Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma,” Clinical Cancer Research, vol. 14, no. 13, pp. 4085–4095, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. Y. C. Chen, C. J. Chang, H. S. Hsu et al., “Inhibition of tumorigenicity and enhancement of radiochemosensitivity in head and neck squamous cell cancer-derived ALDH1-positive cells by knockdown of Bmi-1,” Oral Oncology, vol. 46, no. 3, pp. 158–165, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. LI. B. Song, J. Li, W. T. Liao et al., “The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells,” Journal of Clinical Investigation, vol. 119, no. 12, pp. 3626–3636, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. J. Ji, T. Yamashita, A. Budhu et al., “Identification of MicroRNA-181 by genome-wide screening as a critical player in EpCAM—positive hepatic cancer stem cells,” Hepatology, vol. 50, no. 2, pp. 472–480, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. Q. Ji, X. Hao, M. Zhang et al., “MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells,” PLoS ONE, vol. 4, no. 8, Article ID e6816, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. L. Garzia, I. Andolfo, E. Cusanelli et al., “MicroRNA-199b-5p impairs cancer stem cells through negative regulation of HES1 in medulloblastoma,” PLoS ONE, vol. 4, no. 3, Article ID e4998, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. J. Silber, D. A. Lim, C. Petritsch et al., “miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells,” BMC Medicine, vol. 6, article 14, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. F. Guessous, Y. Zhang, A. Kofman et al., “microRNA-34a is tumor suppressive in brain tumors and glioma stem cells,” Cell Cycle, vol. 9, no. 6, pp. 1031–1036, 2010. View at Google Scholar · View at Scopus
  98. F. Yu, H. Yao, P. Zhu et al., “let-7 regulates self renewal and tumorigenicity of breast cancer cells,” Cell, vol. 131, no. 6, pp. 1109–1123, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. Y. Shimono, M. Zabala, R. W. Cho et al., “Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells,” Cell, vol. 138, no. 3, pp. 592–603, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. F. Yu, H. Deng, H. Yao, Q. Liu, F. Su, and E. Song, “Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells,” Oncogene, vol. 29, pp. 4194–4204, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. T.-S. Wong, X.-B. Liu, A. C.-W. Ho, A. P.-W. Yuen, R. W.-M. Ng, and W. I. Wei, “Identification of pyruvate kinase type M2 as potential oncoprotein in squamous cell carcinoma of tongue through microRNA profiling,” International Journal of Cancer, vol. 123, no. 2, pp. 251–257, 2008. View at Publisher · View at Google Scholar
  102. G. Childs, M. Fazzari, G. Kung et al., “Low-level expression of microRNAs let-7d and miR-205 are prognostic markers of head and neck squamous cell carcinoma,” American Journal of Pathology, vol. 174, no. 3, pp. 736–745, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. M. Korpal, E. S. Lee, G. Hu, and Y. Kang, “The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2,” Journal of Biological Chemistry, vol. 283, no. 22, pp. 14910–14914, 2008. View at Publisher · View at Google Scholar · View at Scopus
  104. S. Spaderna, T. Brabletz, and O. G. Opitz, “The miR-200 family: central player for gain and loss of the epithelial phenotype,” Gastroenterology, vol. 136, no. 5, pp. 1835–1837, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. S. M. Park, A. B. Gaur, E. Lengyel, and M. E. Peter, “The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2,” Genes and Development, vol. 22, no. 7, pp. 894–907, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. C. Nakada, K. Matsuura, Y. Tsukamoto et al., “Genome-wide microRNA expression profiling in renal cell carcinoma: significant down-regulation of miR-141 and miR-200c,” Journal of Pathology, vol. 216, no. 4, pp. 418–427, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. D. Kong, Y. Li, Z. Wang et al., “miR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells,” Stem Cells, vol. 27, no. 8, pp. 1712–1721, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. A. Shinozaki, T. Sakatani, T. Ushiku et al., “Downregulation of MicroRNA-200 in EBV-associated gastric carcinoma,” Cancer Research, vol. 70, no. 11, pp. 4719–4727, 2010. View at Publisher · View at Google Scholar · View at Scopus
  109. E. D. Wiklund, J. B. Bramsen, T. Hulf, L. Dyrskjot, R. Ramanathan, and T. B. Hansen, “Coordinated epigenetic repression of the miR-200 family andmiR-205 in invasive bladder cancer,” International Journal of Cancer. In press.
  110. R. Baffa, M. Fassan, S. Volinia et al., “MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets,” Journal of Pathology, vol. 219, no. 2, pp. 214–221, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. G. J. Hurteau, J. A. Carlson, S. D. Spivack, and G. J. Brock, “Overexpression of the MicroRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin,” Cancer Research, vol. 67, no. 17, pp. 7972–7976, 2007. View at Publisher · View at Google Scholar · View at Scopus
  112. U. Wellner, J. Schubert, U. C. Burk et al., “The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs.,” Nature cell biology, vol. 11, no. 12, pp. 1487–1495, 2009. View at Google Scholar · View at Scopus
  113. N. Tran, T. McLean, X. Zhang et al., “MicroRNA expression profiles in head and neck cancer cell lines,” Biochemical and Biophysical Research Communications, vol. 358, no. 1, pp. 12–17, 2007. View at Publisher · View at Google Scholar · View at Scopus
  114. S. S. Chang, W. W. Jiang, I. Smith et al., “MicroRNA alterations in head and neck squamous cell carcinoma,” International Journal of Cancer, vol. 123, no. 12, pp. 2791–2797, 2008. View at Publisher · View at Google Scholar · View at Scopus
  115. M. Avissar, B. C. Christensen, K. T. Kelsey, and C. J. Marsit, “MicroRNA expression ratio is predictive of head and neck squamous cell carcinoma,” Clinical Cancer Research, vol. 15, no. 8, pp. 2850–2855, 2009. View at Publisher · View at Google Scholar · View at Scopus
  116. N. K. Cervigne, P. P. Reis, J. Machado et al., “Identification of a microRNA signature associated with progression of leukoplakia to oral carcinoma,” Human Molecular Genetics, vol. 18, no. 24, pp. 4818–4829, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. M. A. Saunders, H. Liang, and W. H. Li, “Human polymorphism at microRNAs and microRNA target sites,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 9, pp. 3300–3305, 2007. View at Publisher · View at Google Scholar · View at Scopus
  118. K. Chen, F. Song, G. A. Calin, Q. Wei, X. Hao, and W. Zhang, “Polymorphisms in microRNA targets: a gold mine for molecular epidemiology,” Carcinogenesis, vol. 29, no. 7, pp. 1306–1311, 2008. View at Publisher · View at Google Scholar · View at Scopus
  119. B. C. Christensen, B. J. Moyer, M. Avissar et al., “A let-7 microRNA-binding site polymorphism in the KRAS 3′ UTR is associated with reduced survival in oral cancers,” Carcinogenesis, vol. 30, no. 6, pp. 1003–1007, 2009. View at Publisher · View at Google Scholar · View at Scopus
  120. B. C. Christensen, M. Avissar-Whiting, L. G. Ouellet et al., “Mature microRNA sequence polymorphism in MIR196A2 is associated with risk and prognosis of head and neck cancer,” Clinical Cancer Research, vol. 16, no. 14, pp. 3713–3720, 2010. View at Publisher · View at Google Scholar
  121. R. J. Webster, K. M. Giles, K. J. Price, P. M. Zhang, J. S. Mattick, and P. J. Leedman, “Regulation of epidermal growth factor receptor signaling in human cancer cells by MicroRNA-7,” Journal of Biological Chemistry, vol. 284, no. 9, pp. 5731–5741, 2009. View at Publisher · View at Google Scholar · View at Scopus
  122. J. A. Chan, A. M. Krichevsky, and K. S. Kosik, “MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells,” Cancer Research, vol. 65, no. 14, pp. 6029–6033, 2005. View at Publisher · View at Google Scholar · View at Scopus
  123. I. A. J. Lorimer, “Regulation of p27 by miRNA 221/222 in glioblastoma,” Cell Cycle, vol. 8, no. 17, p. 2685, 2009. View at Google Scholar · View at Scopus
  124. J. Novakova, O. Slaby, R. Vyzula, and J. Michalek, “MicroRNA involvement in glioblastoma pathogenesis,” Biochemical and Biophysical Research Communications, vol. 386, no. 1, pp. 1–5, 2009. View at Publisher · View at Google Scholar · View at Scopus
  125. B. Kefas, J. Godlewski, L. Comeau et al., “microRNA-7 inhibits the epidermal growth factor receptor and the akt pathway and is down-regulated in glioblastoma,” Cancer Research, vol. 68, no. 10, pp. 3566–3572, 2008. View at Publisher · View at Google Scholar · View at Scopus
  126. S. Volinia, G. A. Calin, C. G. Liu et al., “A microRNA expression signature of human solid tumors defines cancer gene targets,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 7, pp. 2257–2261, 2006. View at Publisher · View at Google Scholar · View at Scopus
  127. J. Takamizawa, H. Konishi, K. Yanagisawa et al., “Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival,” Cancer Research, vol. 64, no. 11, pp. 3753–3756, 2004. View at Publisher · View at Google Scholar · View at Scopus
  128. N. Bandi, S. Zbinden, M. Gugger et al., “miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non-small cell lung cancer,” Cancer Research, vol. 69, no. 13, pp. 5553–5559, 2009. View at Publisher · View at Google Scholar · View at Scopus
  129. M. Fabbri, R. Garzon, A. Cimmino et al., “MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 40, pp. 15805–15810, 2007. View at Publisher · View at Google Scholar · View at Scopus
  130. M. W. Nasser, J. Datta, G. Nuovo et al., “Down-regulation of micro-RNA-1 (miR-1) in lung cancer: suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1,” Journal of Biological Chemistry, vol. 283, no. 48, pp. 33394–33405, 2008. View at Publisher · View at Google Scholar
  131. L. X. Yan, X. F. Huang, Q. Shao et al., “MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis,” RNA, vol. 14, no. 11, pp. 2348–2360, 2008. View at Publisher · View at Google Scholar · View at Scopus
  132. S. Valastyan, F. Reinhardt, N. Benaich et al., “A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis,” Cell, vol. 137, no. 6, pp. 1032–1046, 2009. View at Publisher · View at Google Scholar · View at Scopus
  133. M. V. Iorio, P. Casalini, C. Piovan et al., “MicroRNA-205 regulates HER3 in human breast cancer,” Cancer Research, vol. 69, no. 6, pp. 2195–2200, 2009. View at Publisher · View at Google Scholar · View at Scopus
  134. Y. Wang, A. T. C. Lee, J. Z. I. Ma et al., “Profiling microRNA expression in hepatocellular carcinoma reveals microRNA-224 up-regulation and apoptosis inhibitor-5 as a microRNA-224-specific target,” Journal of Biological Chemistry, vol. 283, no. 19, pp. 13205–13215, 2008. View at Publisher · View at Google Scholar · View at Scopus
  135. X. Zhang, S. Liu, T. Hu, S. Liu, Y. He, and S. Sun, “Up-regulated microRNA-143 transcribed by nuclear factor kappa B enhances hepatocarcinoma metastasis by repressing fibronectin expression,” Hepatology, vol. 50, no. 2, pp. 490–499, 2009. View at Publisher · View at Google Scholar · View at Scopus
  136. J. Datta, H. Kutay, M. W. Nasser et al., “Methylation mediated silencing of microRNA-1 gene and its role in hepatocellular carcinogenesis,” Cancer Research, vol. 68, no. 13, pp. 5049–5058, 2008. View at Publisher · View at Google Scholar · View at Scopus
  137. L. Gramantieri, M. Ferracin, F. Fornari et al., “Cyclin G1 is a target of miR-122a, a MicroRNA frequently down-regulated in human hepatocellular carcinoma,” Cancer Research, vol. 67, no. 13, pp. 6092–6099, 2007. View at Publisher · View at Google Scholar · View at Scopus
  138. L. Gramantieri, F. Fornari, E. Callegari et al., “MicroRNA involvement in hepatocellular carcinoma: microRNA review series,” Journal of Cellular and Molecular Medicine, vol. 12, no. 6A, pp. 2189–2204, 2008. View at Publisher · View at Google Scholar · View at Scopus
  139. H. Su, J. R. Yang, T. Xu et al., “MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity,” Cancer Research, vol. 69, no. 3, pp. 1135–1142, 2009. View at Publisher · View at Google Scholar · View at Scopus
  140. E. Connolly, M. Melegari, P. Landgraf et al., “Elevated expression of the miR-17-92 polycistron and miR-21 in hepadnavirus-associated hepatocellular carcinoma contributes to the malignant phenotype,” American Journal of Pathology, vol. 173, no. 3, pp. 856–864, 2008. View at Publisher · View at Google Scholar · View at Scopus
  141. T. Liu, H. Tang, Y. Lang, M. Liu, and X. Li, “MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin,” Cancer Letters, vol. 273, no. 2, pp. 233–242, 2009. View at Publisher · View at Google Scholar · View at Scopus
  142. T. Takagi, A. Iio, Y. Nakagawa, T. Naoe, N. Tanigawa, and Y. Akao, “Decreased expression of microRNA-143 and-145 in human gastric cancers,” Oncology, vol. 77, no. 1, pp. 12–21, 2009. View at Publisher · View at Google Scholar · View at Scopus
  143. Z. Zhang, Z. Li, C. Gao et al., “miR-21 plays a pivotal role in gastric cancer pathogenesis and progression,” Laboratory Investigation, vol. 88, no. 12, pp. 1358–1366, 2008. View at Publisher · View at Google Scholar · View at Scopus
  144. Y. Saito, G. Liang, G. Egger et al., “Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells,” Cancer Cell, vol. 9, no. 6, pp. 435–443, 2006. View at Publisher · View at Google Scholar · View at Scopus
  145. I. A. Asangani, S. A. K. Rasheed, D. A. Nikolova et al., “MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer,” Oncogene, vol. 27, no. 15, pp. 2128–2136, 2008. View at Publisher · View at Google Scholar · View at Scopus
  146. W. M. Grady, R. K. Parkin, P. S. Mitchell et al., “Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer,” Oncogene, vol. 27, no. 27, pp. 3880–3888, 2008. View at Publisher · View at Google Scholar · View at Scopus
  147. M. Toyota, H. Suzuki, Y. Sasaki et al., “Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer,” Cancer Research, vol. 68, no. 11, pp. 4123–4132, 2008. View at Publisher · View at Google Scholar · View at Scopus
  148. H. Tazawa, N. Tsuchiya, M. Izumiya, and H. Nakagama, “Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 39, pp. 15472–15477, 2007. View at Publisher · View at Google Scholar
  149. O. Slaby, M. Svoboda, P. Fabian et al., “Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer,” Oncology, vol. 72, no. 5-6, pp. 397–402, 2008. View at Publisher · View at Google Scholar · View at Scopus
  150. S. Varambally, Q. Cao, R. S. Mani et al., “Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer,” Science, vol. 322, no. 5908, pp. 1695–1699, 2008. View at Publisher · View at Google Scholar · View at Scopus
  151. D. Bonci, V. Coppola, M. Musumeci et al., “The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities,” Nature Medicine, vol. 14, no. 11, pp. 1271–1277, 2008. View at Publisher · View at Google Scholar · View at Scopus
  152. E. J. Noonan, R. F. Place, D. Pookot et al., “MiR-449a targets HDAC-1 and induces growth arrest in prostate cancer,” Oncogene, vol. 28, no. 14, pp. 1714–1724, 2009. View at Publisher · View at Google Scholar · View at Scopus
  153. S. Galardi, N. Mercatelli, E. Giorda et al., “miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27,” Journal of Biological Chemistry, vol. 282, no. 32, pp. 23716–23724, 2007. View at Publisher · View at Google Scholar · View at Scopus
  154. J. Kluiver, S. Poppema, D. de Jong et al., “BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas,” Journal of Pathology, vol. 207, no. 2, pp. 243–249, 2005. View at Publisher · View at Google Scholar · View at Scopus
  155. L. He, J. M. Thomson, M. T. Hemann et al., “A microRNA polycistron as a potential human oncogene,” Nature, vol. 435, no. 7043, pp. 828–833, 2005. View at Publisher · View at Google Scholar · View at Scopus
  156. Y. Akao, Y. Nakagawa, Y. Kitade, T. Kinoshita, and T. Naoe, “Downregulation of microRNAs-143 and -145 in B-cell malignancies,” Cancer Science, vol. 98, no. 12, pp. 1914–1920, 2007. View at Publisher · View at Google Scholar · View at Scopus
  157. B. Stamatopoulos, N. Meuleman, B. Haibe-Kains et al., “microRNA-29c and microRNA-223 down-regulation has in vivo significance in chronic lymphocytic leukemia and improves disease risk stratification,” Blood, vol. 113, no. 21, pp. 5237–5245, 2009. View at Publisher · View at Google Scholar · View at Scopus
  158. V. Fulci, S. Chiaretti, M. Goldoni et al., “Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia,” Blood, vol. 109, no. 11, pp. 4944–4951, 2007. View at Publisher · View at Google Scholar · View at Scopus
  159. M. K. Dijkstra, K. van Lom, D. Tielemans et al., “17p13/TP53 deletion in B-CLL patients is associated with microRNA-34a downregulation,” Leukemia, vol. 23, no. 3, pp. 625–627, 2009. View at Publisher · View at Google Scholar · View at Scopus
  160. Y. Pekarsky, U. Santanam, A. Cimmino et al., “Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181,” Cancer Research, vol. 66, no. 24, pp. 11590–11593, 2006. View at Publisher · View at Google Scholar · View at Scopus
  161. M. Avissar, M. D. McClean, K. T. Kelsey, and C. J. Marsit, “MicroRNA expression in head and neck cancer associates with alcohol consumption and survival,” Carcinogenesis, vol. 30, no. 12, pp. 2059–2063, 2009. View at Publisher · View at Google Scholar · View at Scopus
  162. H. C. Chen, G. H. Chen, Y. H. Chen et al., “MicroRNA deregulation and pathway alterations in nasopharyngeal carcinoma,” British Journal of Cancer, vol. 100, no. 6, pp. 1002–1011, 2009. View at Publisher · View at Google Scholar · View at Scopus
  163. J. Jiang, E. J. Lee, Y. Gusev, and T. D. Schmittgen, “Real-time expression profiling of microRNA precursors in human cancer cell lines,” Nucleic Acids Research, vol. 33, no. 17, pp. 5394–5403, 2005. View at Publisher · View at Google Scholar · View at Scopus
  164. K. I. Kozaki, I. Imoto, S. Mogi, K. Omura, and J. Inazawa, “Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer,” Cancer Research, vol. 68, no. 7, pp. 2094–2105, 2008. View at Publisher · View at Google Scholar · View at Scopus
  165. L. Ramdas, U. Giri, C. L. Ashorn et al., “miRNA expression profiles in head and neck squamous cell carcinoma and adjacent normal tissue,” Head and Neck, vol. 31, no. 5, pp. 642–654, 2009. View at Publisher · View at Google Scholar · View at Scopus
  166. S. Sengupta, J. A. Den Boon, I. H. Chen et al., “MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 15, pp. 5874–5878, 2008. View at Publisher · View at Google Scholar · View at Scopus
  167. X. Zhang, M. Cairns, B. Rose et al., “Alterations in miRNA processing and expression in pleomorphic adenomas of the salivary gland,” International Journal of Cancer, vol. 124, no. 12, pp. 2855–2863, 2009. View at Publisher · View at Google Scholar · View at Scopus
  168. N. J. Park, H. Zhou, D. Elashoff et al., “Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection,” Clinical Cancer Research, vol. 15, no. 17, pp. 5473–5477, 2009. View at Publisher · View at Google Scholar · View at Scopus
  169. Y. Tian, A. Luo, Y. Cai et al., “MicroRNA-10b promotes migration and invasion through KLF4 in human esophageal cancer cell lines,” Journal of Biological Chemistry, vol. 285, no. 11, pp. 7986–7994, 2010. View at Publisher · View at Google Scholar · View at Scopus