Table of Contents Author Guidelines Submit a Manuscript
Journal of Oncology
Volume 2010, Article ID 539706, 6 pages
http://dx.doi.org/10.1155/2010/539706
Review Article

Sympathetic Neurotransmitters and Tumor Angiogenesis—Link between Stress and Cancer Progression

Department of Physiology & Biophysics, Georgetown University, Basic Science Building 231A, 3900 Reservoir Rd., NW, Washington, DC 20007, USA

Received 16 November 2009; Accepted 18 March 2010

Academic Editor: Sundaram Ramakrishnan

Copyright © 2010 Jason Tilan and Joanna Kitlinska. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. P. Chrousos and P. W. Gold, “The concepts of stress and stress system disorders: overview of physical and behavioral homeostasis,” Journal of the American Medical Association, vol. 267, no. 9, pp. 1244–1252, 1992. View at Publisher · View at Google Scholar · View at Scopus
  2. T. E. Seeman, B. H. Singer, J. W. Rowe, R. I. Horwitz, and B. S. McEwen, “Price of adaptation—allostatic load and its health consequences: MacArthur studies of successful aging,” Archives of Internal Medicine, vol. 157, no. 19, pp. 2259–2268, 1997. View at Google Scholar · View at Scopus
  3. B. S. McEwen and E. Stellar, “Stress and the individual. Mechanisms leading to disease,” Archives of Internal Medicine, vol. 153, no. 18, pp. 2093–2101, 1993. View at Google Scholar
  4. M. H. Antoni, S. K. Lutgendorf, S. W. Cole et al., “The influence of bio-behavioural factors on tumour biology: pathways and mechanisms,” Nature Reviews Cancer, vol. 6, no. 3, pp. 240–248, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. P. H. Thaker, L. Y. Han, A. A. Kamat et al., “Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma,” Nature Medicine, vol. 12, no. 8, pp. 939–944, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. J.-W. Lee, M. M. K. Shahzad, Y. G. Lin et al., “Surgical stress promotes tumor growth in ovarian carcinoma,” Clinical Cancer Research, vol. 15, no. 8, pp. 2695–2702, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. J. P. Godbout and R. Glaser, “Stress-induced immune dysregulation: implications for wound healing, infectious disease and cancer,” Journal of Neuroimmune Pharmacology, vol. 1, no. 4, pp. 421–427, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. F. S. Dhabhar, A. N. Saul, C. Daugherty, T. H. Holmes, D. M. Bouley, and T. M. Oberyszyn, “Short-term stress enhances cellular immunity and increases early resistance to squamous cell carcinoma,” Brain, Behavior, and Immunity, vol. 24, no. 1, pp. 127–137, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. F. S. Dhabhar, “Enhancing versus suppressive effects of stress on immune function: implications for immunoprotection and immunopathology,” NeuroImmunoModulation, vol. 16, no. 5, pp. 300–317, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Kitlinska, K. Abe, L. Kuo et al., “Differential effects of neuropeptide Y on the growth and vascularization of neural crest-derived tumors,” Cancer Research, vol. 65, no. 5, pp. 1719–1728, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Palm, K. Lang, B. Niggemann et al., “The norepinephrine-driven metastasis development of PC-3 human prostate cancer cells in BALB/c nude mice is inhibited by ß-blockers,” International Journal of Cancer, vol. 118, no. 11, pp. 2744–2749, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. A. K. Sood, R. Bhatty, A. A. Kamat et al., “Stress hormone-mediated invasion of ovarian cancer cells,” Clinical Cancer Research, vol. 12, no. 2, pp. 369–375, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. A. E. Carie and S. M. Sebti, “A chemical biology approach identifies a β-2 adrenergic receptor agonist that causes human tumor regression by blocking the Raf-1/Mek-1/Erk1/2 pathway,” Oncogene, vol. 26, no. 26, pp. 3777–3788, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Sarkar, D. Chakroborty, U. R. Chowdhury, P. S. Dasgupta, and S. Basu, “Dopamine increases the efficacy of anticancer drugs in breast and colon cancer preclinical models,” Clinical Cancer Research, vol. 14, no. 8, pp. 2502–2510, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Chakroborty, C. Sarkar, B. Basu, P. S. Dasgupta, and S. Basu, “Catecholamines regulate tumor angiogenesis,” Cancer Research, vol. 69, no. 9, pp. 3727–3730, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. E. V. Yang, S.-J. Kim, E. L. Donovan et al., “Norepinephrine upregulates VEGF, IL-8, and IL-6 expression in human melanoma tumor cell lines: implications for stress-related enhancement of tumor progression,” Brain, Behavior, and Immunity, vol. 23, no. 2, pp. 267–275, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. D. S. Goldstein, “Catecholamines and stress,” Endocrine Regulations, vol. 37, no. 2, pp. 69–80, 2003. View at Google Scholar · View at Scopus
  18. S. Ben-Eliyahu, R. Yirmiya, J. C. Liebeskind, A. N. Taylor, and R. P. Gale, “Stress increases metastatic spread of a mammary tumor in rats: evidence for mediation by the immune system,” Brain, Behavior, and Immunity, vol. 5, no. 2, pp. 193–205, 1991. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Melamed, E. Rosenne, K. Shakhar, Y. Schwartz, N. Abudarham, and S. Ben-Eliyahu, “Marginating pulmonary-NK activity and resistance to experimental tumor metastasis: suppression by surgery and the prophylactic use of a β-adrenergic antagonist and a prostaglandin synthesis inhibitor,” Brain, Behavior, and Immunity, vol. 19, no. 2, pp. 114–126, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. R. Yang and K.-C. Chou, “Bio-support vector machines for computational proteomics,” Bioinformatics, vol. 20, no. 5, pp. 735–741, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. E. V. Yang, A. K. Sood, M. Chen et al., “Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP-9 in nasopharyngeal carcinoma tumor cells,” Cancer Research, vol. 66, no. 21, pp. 10357–10364, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. M. B. Nilsson, G. Armaiz-Pena, R. Takahashi et al., “Stress hormones regulate interleukin-6 expression by human ovarian carcinoma cells through a Src-dependent mechanism,” The Journal of Biological Chemistry, vol. 282, no. 41, pp. 29919–29926, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. H. P. S. Wong, L. Yu, E. K. Y. Lam, E. K. K. Tai, W. K. K. Wu, and C.-H. Cho, “Nicotine promotes colon tumor growth and angiogenesis through β-adrenergic activation,” Toxicological Sciences, vol. 97, no. 2, pp. 279–287, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. J. W. Pollard, “Tumour-educated macrophages promote tumour progression and metastasis,” Nature Reviews Cancer, vol. 4, no. 1, pp. 71–78, 2004. View at Google Scholar · View at Scopus
  25. S. K. Lutgendorf, D. M. Lamkin, N. B. Jennings et al., “Biobehavioral influences on matrix metalloproteinase expression in ovarian carcinoma,” Clinical Cancer Research, vol. 14, no. 21, pp. 6839–6846, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. M. C. Vinci, L. Bellik, S. Filippi et al., “Trophic effects induced by a1D-adrenoceptors on endothelial cells are potentiated by hypoxia,” American Journal of Physiology, vol. 293, no. 4, pp. H2140–H2147, 2007. View at Google Scholar
  27. V. Borovsky, M. Herman, G. Dunphy et al., “CO2 asphyxia increases plasma norepinephrine in rats via sympathetic nerves,” American Journal of Physiology, vol. 274, no. 1, part 2, pp. R19–R22, 1998. View at Google Scholar
  28. L. Perron, I. Bairati, F. Harel, and F. Meyer, “Antihypertensive drug use and the risk of prostate cancer (Canada),” Cancer Causes and Control, vol. 15, no. 6, pp. 535–541, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Rodriguez, E. J. Jacobs, A. Deka et al., “Use of blood-pressure-lowering medication and risk of prostate cancer in the Cancer Prevention Study II Nutrition Cohort,” Cancer Causes and Control, vol. 20, no. 5, pp. 671–679, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Pifl, J. Zezula, A. Spittler et al., “Antiproliferative action of dopamine and norepinephrine in neuroblastoma cells expressing the human dopamine transporter,” The FASEB Journal, vol. 15, no. 9, pp. 1607–1609, 2001. View at Google Scholar · View at Scopus
  31. A. C. Scarparo, D. H. Sumida, M. T. C. C. Patrão, M. C. W. Avellar, M. A. Visconti, and A. M. D. L. Castrucci, “Catecholamine effects on human melanoma cells evoked by α1-adrenoceptors,” Archives of Dermatological Research, vol. 296, no. 3, pp. 112–119, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. T. L. Drell IV, J. Joseph, K. Lang, B. Niggemann, K. S. Zaenker, and F. Entschladen, “Effects of neurotransmitters on the chemokinesis and chemotaxis of MDA-MB-468 human breast carcinoma cells,” Breast Cancer Research and Treatment, vol. 80, no. 1, pp. 63–70, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. C. R. Meier, L. E. Derby, S. S. Jick, and H. Jick, “Angiotensin-converting enzyme inhibitors, calcium channel blockers, and breast cancer,” Archives of Internal Medicine, vol. 160, no. 3, pp. 349–353, 2000. View at Google Scholar · View at Scopus
  34. C. I. Li, K. E. Malone, N. S. Weiss, D. M. Boudreau, K. L. Cushing-Haugen, and J. R. Daling, “Relation between use of antihypertensive medications and risk of breast carcinoma among women ages 65–79 years,” Cancer, vol. 98, no. 7, pp. 1504–1513, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. S. R. Snider and O. Kuchel, “Dopamine: an important neurohormone of the sympathoadrenal system. Significance of increased peripheral dopamine release for the human stress response and hypertension,” Endocrine Reviews, vol. 4, no. 3, pp. 291–309, 1983. View at Google Scholar · View at Scopus
  36. D. Chakroborty, C. Sarkar, R. B. Mitra, S. Banerjee, P. S. Dasgupta, and S. Basu, “Depleted dopamine in gastric cancer tissues: dopamine treatment retards growth of gastric cancer by inhibiting angiogenesis,” Clinical Cancer Research, vol. 10, no. 13, pp. 4349–4356, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Asada, S. Ebihara, Y. Numachi et al., “Reduced tumor growth in a mouse model of schizophrenia, lacking the dopamine transporter,” International Journal of Cancer, vol. 123, no. 3, pp. 511–518, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Basu, J. A. Nagy, S. Pal et al., “The neurotransmitter dopamine inhibits angiogenesis induced by vascular permeability factor/vascular endothelial growth factor,” Nature Medicine, vol. 7, no. 5, pp. 569–574, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Sarkar, D. Chakroborty, R. B. Mitra, S. Banerjee, P. S. Dasgupta, and S. Basu, “Dopamine in vivo inhibits VEGF-induced phosphorylation of VEGFR-2, MAPK, and focal adhesion kinase in endothelial cells,” American Journal of Physiology, vol. 287, no. 4, pp. H1554–H1560, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. D. Chakroborty, U. R. Chowdhury, C. Sarkar, R. Baral, P. S. Dasgupta, and S. Basu, “Dopamine regulates endothelial progenitor cell mobilization from mouse bone marrow in tumor vascularization,” Journal of Clinical Investigation, vol. 118, no. 4, pp. 1380–1389, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. W. F. Colmers and C. Wahlestedt, The Biology of Neuropeptide Y and Related Peptides, Humana Press, Totowa, NJ, USA, 1993.
  42. Z. Zukowska-Grojec, P. Pruszczyk, C. Colton et al., “Mitogenic effect of neuropeptide Y in rat vascular smooth muscle cells,” Peptides, vol. 14, no. 2, pp. 263–268, 1993. View at Publisher · View at Google Scholar · View at Scopus
  43. Z. Zukowska-Grojec, E. Karwatowska-Prokopczuk, W. Rose et al., “Neuropeptide Y a novel angiogenic factor from the sympathetic nerves and endothelium,” Circulation Research, vol. 83, no. 2, pp. 187–195, 1998. View at Google Scholar · View at Scopus
  44. D. E. Hansel, B. A. Eipper, and G. V. Ronnett, “Neuropeptide Y functions as a neuroproliferative factor,” Nature, vol. 410, no. 6831, pp. 940–944, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Pons, J. Kitlinska, H. Ji et al., “Bimodal mitogenic action of neuropeptide Y in vascular smooth muscle cells: dimerization of the receptors?” Molecular Biology of the Cell, vol. 13, supplement, article 80a, 2002. View at Google Scholar
  46. E. W. Lee, M. Michalkiewicz, J. Kitlinska et al., “Neuropeptide Y induces ischemic angiogenesis and restores function of ischemic skeletal muscles,” Journal of Clinical Investigation, vol. 111, no. 12, pp. 1853–1862, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Movafagh, J. P. Hobson, S. Spiegel, H. K. Kleinman, and Z. Zukowska, “Neuropeptide Y induces migration, proliferation, and tube formation of endothelial cells bimodally via Y1, Y2, and Y5 receptors,” The FASEB Journal, vol. 20, no. 11, pp. 1924–1926, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. A. J. Ekstrand, R. Cao, M. Björndahl et al., “Deletion of neuropeptide Y (NPY)2 receptor in mice results in blockage of NPY-induced angiogenesis and delayed wound healing,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 10, pp. 6033–6038, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. E. W. Lee, D. S. Grant, S. Movafagh, and Z. Zukowska, “Impaired angiogenesis in neuropeptide Y (NPY)-Y2 receptor knockout mice,” Peptides, vol. 24, no. 1, pp. 99–106, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. L. Li, E. W. Lee, H. Ji, and Z. Zukowska, “Neuropeptide Y-induced acceleration of postangioplasty occlusion of rat carotid artery,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 7, pp. 1204–1210, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Koulu, S. Movafagh, J. Tuohimaa et al., “Neuropeptide Y and Y2-receptor are involved in development of diabetic retinopathy and retinal neovascularization,” Annals of Medicine, vol. 36, no. 3, pp. 232–240, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. L. E. Kuo, J. B. Kitlinska, J. U. Tilan et al., “Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome,” Nature Medicine, vol. 13, no. 7, pp. 803–811, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. C. D. Liu, A. Balasubramaniam, R. E. Saxton, M. Paiva, and D. W. McFadden, “Human pancreatic cancer growth is inhibited by peptide YY and BIM-43004-1,” Journal of Surgical Research, vol. 58, no. 6, pp. 707–712, 1995. View at Publisher · View at Google Scholar · View at Scopus
  54. K. R. Grise, A. J. Rongione, E. C. Laird, and D. W. McFadden, “Peptide YY inhibits growth of human breast cancer in vitro and in vivo,” Journal of Surgical Research, vol. 82, no. 2, pp. 151–155, 1999. View at Publisher · View at Google Scholar · View at Scopus
  55. T. Heisler, S. Towfigh, N. Simon, and D. W. McFadden, “Peptide YY and vitamin E inhibit hormone-sensitive and -insensitive breast cancer cells,” Journal of Surgical Research, vol. 91, no. 1, pp. 9–14, 2000. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Yu, P. Somasundar, A. Balsubramaniam, A. T. Rose, L. Vona-Davis, and D. W. McFadden, “Vitamin E and the Y4 agonist BA-129 decrease prostate cancer growth and production of vascular endothelial growth factor,” Journal of Surgical Research, vol. 105, no. 1, pp. 65–68, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. Z. Zukowska-Grojec, “Neuropeptide Y. A novel sympathetic stress hormone and more,” Annals of the New York Academy of Sciences, vol. 771, pp. 219–233, 1995. View at Google Scholar
  58. A. Thorsell, M. Michalkiewicz, Y. Dumont et al., “Behavioral insensitivity to restraint stress, absent fear suppression of behavior and impaired spatial learning in transgenic rats with hippocampal neuropeptide Y overexpression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 23, pp. 12852–12857, 2000. View at Publisher · View at Google Scholar · View at Scopus
  59. C. C. Carvajal, F. Vercauteren, Y. Dumont, M. Michalkiewicz, and R. Quirion, “Aged neuropeptide Y transgenic rats are resistant to acute stress but maintain spatial and non-spatial learning,” Behavioural Brain Research, vol. 153, no. 2, pp. 471–480, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. L. Li, A.-C. Jönsson-Rylander, K. Abe, and Z. Zukowska, “Chronic stress induces rapid occlusion of angioplasty-injured rat carotid artery by activating neuropeptide Y and its Y1 receptors,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 10, pp. 2075–2080, 2005. View at Publisher · View at Google Scholar · View at Scopus