Table of Contents Author Guidelines Submit a Manuscript
Journal of Oncology
Volume 2010, Article ID 932803, 10 pages
http://dx.doi.org/10.1155/2010/932803
Research Article

Hyperphosphorylated FAK Delocalizes from Focal Adhesions to Membrane Ruffles

1Laboratoire de Biophotonique et Pharmacologie, CNRS, UMR 7213, 74 rte du Rhin, 67401 Illkirch, France
2Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France

Received 15 February 2010; Revised 16 June 2010; Accepted 6 July 2010

Academic Editor: Geraldine M. O'Neill

Copyright © 2010 Abdelkader Hamadi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. A. Lauffenburger and A. F. Horwitz, “Cell migration: a physically integrated molecular process,” Cell, vol. 84, no. 3, pp. 359–369, 1996. View at Publisher · View at Google Scholar · View at Scopus
  2. M. D. Schaller, J. D. Hildebrand, and J. T. Parsons, “Complex formation with focal adhesion kinase: a mechanism to regulate activity and subcellular localization of Src kinases,” Molecular Biology of the Cell, vol. 10, no. 10, pp. 3489–3505, 1999. View at Google Scholar · View at Scopus
  3. M. D. Schaller, J. D. Hildebrand, J. D. Shannon, J. W. Fox, R. R. Vines, and J. T. Parsons, “Autophosphorylation of the focal adhesion kinase, pp125(FAK), directs SH2- dependent binding of pp60(src),” Molecular and Cellular Biology, vol. 14, no. 3, pp. 1680–1688, 1994. View at Google Scholar · View at Scopus
  4. D. D. Schlaepfer, C. R. Hauck, and D. J. Sieg, “Signaling through focal adhesion kinase,” Progress in Biophysics and Molecular Biology, vol. 71, no. 3-4, pp. 435–478, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Ilic, Y. Furuta, S. Kanazawa et al., “Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice,” Nature, vol. 377, no. 6549, pp. 539–544, 1995. View at Google Scholar · View at Scopus
  6. D. J. Webb, K. Donais, L. A. Whitmore et al., “FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly,” Nature Cell Biology, vol. 6, no. 2, pp. 154–161, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. B.-Z. Katz, L. Romer, S. Miyamoto et al., “Targeting membrane-localized focal adhesion kinase to focal adhesions. Roles of tyrosine phosphorylation and Src family kinases,” Journal of Biological Chemistry, vol. 278, no. 31, pp. 29115–29120, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. N. O. Carragher, M. A. Westhoff, V. J. Fincham, M. D. Schaller, and M. C. Frame, “A novel role for FAK as a protease-targeting adaptor protein: regulation by p42 ERK and Src,” Current Biology, vol. 13, no. 16, pp. 1442–1450, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. N. O. Carragher, V. J. Fincham, D. Riley, and M. C. Frame, “Cleavage of focal adhesion kinase by different proteases during Src-regulated transformation and apoptosis. Distinct roles for calpain and caspases,” Journal of Biological Chemistry, vol. 276, no. 6, pp. 4270–4275, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Giannone, P. Rondé, M. Gaire, J. Haiech, and K. Takeda, “Calcium oscillations trigger focal adhesion disassembly in human U87 astrocytoma cells,” Journal of Biological Chemistry, vol. 277, no. 29, pp. 26364–26371, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. D. J. Sieg, C. R. Hauck, and D. D. Schlaepfer, “Required role of focal adhesion kinase (FAK) for integrin-stimulated cell migration,” Journal of Cell Science, vol. 112, no. 16, pp. 2677–2691, 1999. View at Google Scholar · View at Scopus
  12. M. A. Westhoff, B. Serrels, V. J. Fincham, M. C. Frame, and N. O. Carragher, “Src-mediated phosphorylation of focal adhesion kinase couples actin and adhesion dynamics to survival signaling,” Molecular and Cellular Biology, vol. 24, no. 18, pp. 8113–8133, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Giannone, P. Rondé, M. Gaire et al., “Calcium rises locally trigger focal adhesion disassembly and enhance residency of focal adhesion kinase at focal adhesions,” Journal of Biological Chemistry, vol. 279, no. 27, pp. 28715–28723, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Hamadi, M. Bouali, M. Dontenwill, H. Stoeckel, K. Takeda, and P. Rondé, “Regulation of focal adhesion dynamics and disassembly by phosphorylation of FAK at tyrosine 397,” Journal of Cell Science, vol. 118, no. 19, pp. 4415–4425, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Feick, S. Gilhaus, and I. Schulz, “Pervanadate stimulates amylase release and protein tyrosine phosphorylation of paxillin and p125(FAK) in differentiated AR4-2J pancreatic acinar cells,” Journal of Biological Chemistry, vol. 273, no. 26, pp. 16366–16373, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. X. Li, R. C. Dy, W. G. Cance, L. M. Graves, and H. S. Earp, “Interactions between two cytoskeleton-associated tyrosine kinases: calcium-dependent tyrosine kinase and focal adhesion tyrosine kinase,” Journal of Biological Chemistry, vol. 274, no. 13, pp. 8917–8924, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. M. B. Calalb, X. Zhang, T. R. Polte, and S. K. Hanks, “Focal ahdhesion kinase tyrosine-861 is a major site of phosphorylation by Src,” Biochemical and Biophysical Research Communications, vol. 228, no. 3, pp. 662–668, 1996. View at Publisher · View at Google Scholar · View at Scopus
  18. M.-C. Maa and T.-H. Leu, “Vanadate-dependent FAK activation is accomplished by the sustained FAK Tyr-576/577 phosphorylation,” Biochemical and Biophysical Research Communications, vol. 251, no. 1, pp. 344–349, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. E. J. Ezratty, M. A. Partridge, and G. G. Gundersen, “Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase,” Nature Cell Biology, vol. 7, no. 6, pp. 581–590, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. D. A. Hsia, S. K. Mitra, C. R. Hauck et al., “Differential regulation of cell motility and invasion by FAK,” Journal of Cell Biology, vol. 160, no. 5, pp. 753–767, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. D. D. Schlaepfer and S. K. Mitra, “Multiple connections link FAK to cell motility and invasion,” Current Opinion in Genetics and Development, vol. 14, no. 1, pp. 92–101, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. I. Kaverina, K. Rottner, and J. V. Small, “Targeting, capture, and stabilization of microtubules at early focal adhesions,” Journal of Cell Biology, vol. 142, no. 1, pp. 181–190, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. V. G. Brunton, E. Avizienyte, V. J. Fincham et al., “Identification of Src-specific phosphorylation site on focal adhesion kinase: dissection of the role of Src SH2 and catalytic functions and their consequences for tumor cell behavior,” Cancer Research, vol. 65, no. 4, pp. 1335–1342, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. G. W. McLean, V. J. Fincham, and M. C. Frame, “v-Src induces tyrosine phosphorylation of focal adhesion kinase independently of tyrosine 397 and formation of a complex with Src,” Journal of Biological Chemistry, vol. 275, no. 30, pp. 23333–23339, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. R. W. Tilghman, J. K. Slack-Davis, N. Sergina et al., “Focal adhesion kinase is required for the spatial organization of the leading edge in migrating cells,” Journal of Cell Science, vol. 118, no. 12, pp. 2613–2623, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Braren, H. Hu, Y. H. Kim, H. E. Beggs, L. F. Reichardt, and R. Wang, “Endothelial FAK is essential for vascular network stability, cell survival, and lamellipodial formation,” Journal of Cell Biology, vol. 172, no. 1, pp. 151–162, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. P. S. Leventhal, E. A. Shelden, B. Kim, and E. L. Feldman, “Tyrosine phosphorylation of paxillin and focal adhesion kinase during insulin-like growth factor-I-stimulated lamellipodial advance,” Journal of Biological Chemistry, vol. 272, no. 8, pp. 5214–5218, 1997. View at Publisher · View at Google Scholar · View at Scopus
  28. M. G. Yeo, M. A. Partridge, E. J. Ezratty, Q. Shen, G. G. Gundersen, and E. E. Marcantonio, “Src SH2 arginine 175 is required for cell motility: specific focal adhesion kinase targeting and focal adhesion assembly function,” Molecular and Cellular Biology, vol. 26, no. 12, pp. 4399–4409, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Hamadi, T. B. Deramaudt, K. Takeda, and P. Rondé, “Src activation and translocation from focal adhesions to membrane ruffles contribute to formation of new adhesion sites,” Cellular and Molecular Life Sciences, vol. 66, no. 2, pp. 324–338, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. V. J. Fincham, M. Unlu, V. G. Brunton, J. D. Pitts, J. A. Wyke, and M. C. Frame, “Translocation of src kinase to the cell periphery is mediated by the actin cytoskeleton under the control of the Rho family of small G proteins,” Journal of Cell Biology, vol. 135, no. 6, pp. 1551–1564, 1996. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Sakurama, K. Noma, M. Takaoka et al., “Inhibition of focal adhesion kinase as a potential therapeutic strategy for imatinib-resistant gastrointestinal stromal tumor,” Molecular Cancer Therapeutics, vol. 8, no. 1, pp. 127–134, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Schultze, S. Decker, J. Otten et al., “TAE226-mediated inhibition of focal adhesion kinase interferes with tumor angiogenesis and vasculogenesis,” Investigational New Drugs. In press. View at Publisher · View at Google Scholar · View at Scopus
  33. V. M. Golubovskaya, C. Nyberg, M. Zheng et al., “A small molecule inhibitor, 1,2,4,5-benzenetetraamine tetrahydrochloride, targeting the Y397 site of focal adhesion kinase decreases tumor growth,” Journal of Medicinal Chemistry, vol. 51, no. 23, pp. 7405–7416, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. S. N. Hochwald, C. Nyberg, M. Zheng et al., “A novel small molecule inhibitor of FAK decreases growth of human pancreatic cancer,” Cell Cycle, vol. 8, no. 15, pp. 2435–2443, 2009. View at Google Scholar · View at Scopus