Table of Contents Author Guidelines Submit a Manuscript
Journal of Oncology
Volume 2010, Article ID 969084, 14 pages
Research Article

Breast Carcinoma Cells in Primary Tumors and Effusions Have Different Gene Array Profiles

1Department of Pharmacology and Experimental Therapeutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
2Genomic Data Analysis Unit, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
3Department of Pathology, Rabin Medical Center, Petach Tikva 49100, Israel
4Division of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, 0310 Oslo, Norway
5Faculty Division Norwegian Radium Hospital, The Medical Faculty, University of Oslo, 0316 Oslo, Norway
6David R. Bloom Center for Pharmacy, The Hebrew University of Jerusalem, Israel

Received 22 April 2009; Accepted 2 June 2009

Academic Editor: Tian-Li Wang

Copyright © 2010 Sophya Konstantinovsky et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The detection of breast carcinoma cells in effusions is associated with rapidly fatal outcome, but these cells are poorly characterized at the molecular level. This study compared the gene array signatures of breast carcinoma cells in primary carcinomas and effusions. The genetic signature of 10 primary tumors and 10 effusions was analyzed using the Array-Ready Oligo set for the Human Genome platform. Results for selected genes were validated using PCR, Western blotting, and immunohistochemistry. Array analysis identified 255 significantly downregulated and 96 upregulated genes in the effusion samples. The majority of differentially expressed genes were part of pathways involved in focal adhesion, extracellular matrix-cell interaction, and the regulation of the actin cytoskeleton. Genes that were upregulated in effusions included KRT8, BCAR1, CLDN4, VIL2, while DCN, CLDN19, ITGA7, and ITGA5 were downregulated at this anatomic site. PCR, Western blotting, and immunohistochemistry confirmed the array findings for BCAR1, CLDN4, VIL2, and DCN. Our data show that breast carcinoma cells in primary carcinomas and effusions have different gene expression signatures, and differentially express a large number of molecules related to adhesion, motility, and metastasis. These differences may have a critical role in designing therapy and in prognostication for patients with metastatic disease localized to the serosal cavities.