Table of Contents Author Guidelines Submit a Manuscript
Journal of Oncology
Volume 2010, Article ID 969084, 14 pages
http://dx.doi.org/10.1155/2010/969084
Research Article

Breast Carcinoma Cells in Primary Tumors and Effusions Have Different Gene Array Profiles

1Department of Pharmacology and Experimental Therapeutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
2Genomic Data Analysis Unit, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
3Department of Pathology, Rabin Medical Center, Petach Tikva 49100, Israel
4Division of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, 0310 Oslo, Norway
5Faculty Division Norwegian Radium Hospital, The Medical Faculty, University of Oslo, 0316 Oslo, Norway
6David R. Bloom Center for Pharmacy, The Hebrew University of Jerusalem, Israel

Received 22 April 2009; Accepted 2 June 2009

Academic Editor: Tian-Li Wang

Copyright © 2010 Sophya Konstantinovsky et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global cancer statistics, 2002,” CA: A Cancer Journal for Clinicians, vol. 55, no. 2, pp. 74–108, 2005. View at Google Scholar
  2. F. H. hausheer and J. W. Yarbro, “Diagnosis and treatment of malignant pleural effusion,” Seminars in Oncology, vol. 12, no. 1, pp. 54–75, 1985. View at Google Scholar
  3. E. Martinez-Moragón, J. Aparicio, J. Sanchis, R. Menéndez, M. Cruz Rogado, and F. Sanchis, “Malignant pleural effusion: prognostic factors for survival and response to chemical pleurodesis in a series of 120 cases,” Respiration, vol. 65, no. 2, pp. 108–113, 1998. View at Publisher · View at Google Scholar
  4. J. D. Wilkes, P. Fidias, L. Vaickus, and R. P. Perez, “Malignancy-related pericardial effusion: 127 cases from the Roswell Park Cancer Institute,” Cancer, vol. 76, no. 8, pp. 1377–1387, 1995. View at Publisher · View at Google Scholar
  5. M. Dieterich, S. N. Goodman, R. R. Rojas-Corona, A. B. Emralino, D. Jimenez-Joseph, and M. E. Sherman, “Multivariate analysis of prognostic features in malignant pleural effusions from breast cancer patients,” Acta Cytologica, vol. 38, no. 6, pp. 945–952, 1994. View at Google Scholar
  6. A. K. Banerjee, I. Willetts, J. F. R. Robertson, and R. W. Blamey, “Pleural effusion in breast cancer: a review of the Nottingham experience,” European Journal of Surgical Oncology, vol. 20, no. 1, pp. 33–36, 1994. View at Google Scholar
  7. B. Davidson, R. Reich, P. Lazarovici, V. A. Flørenes, S. Nielsen, and J. M. Nesland, “Altered expression and activation of the nerve growth factor receptors TrkA and p75 provide the first evidence of tumor progression to effusion in breast carcinoma,” Breast Cancer Research and Treatment, vol. 83, no. 2, pp. 119–128, 2004. View at Publisher · View at Google Scholar
  8. B. Davidson, S. Konstantinovsky, S. Nielsen et al., “Altered expression of metastasis-associated and regulatory molecules in effusions from breast cancer patients: a novel model for tumor progression,” Clinical Cancer Research, vol. 10, no. 21, pp. 7335–7346, 2004. View at Publisher · View at Google Scholar
  9. B. Davidson, S. Konstantinovsky, L. Kleinberg et al., “The mitogen-activated protein kinases (MAPK) p38 and JNK are markers of tumor progression in breast carcinoma,” Gynecologic Oncology, vol. 102, no. 3, pp. 453–461, 2006. View at Publisher · View at Google Scholar
  10. L. Kleinberg, V. A. Flørenes, J. M. Nesland, and B. Davidson, “Survivin, a member of the inhibitors of apoptosis family, is down-regulated in breast carcinoma effusions,” American Journal of Clinical Pathology, vol. 128, no. 3, pp. 389–397, 2007. View at Publisher · View at Google Scholar
  11. V. N. Dupont, D. Gentien, M. Oberkampf, Y. De Rycke, and N. Blin, “A gene expression signature associated with metastatic cells in effusions of breast carcinoma patients,” International Journal of Cancer, vol. 121, no. 5, pp. 1036–1046, 2007. View at Publisher · View at Google Scholar
  12. B. Davidson, S. Nielsen, J. Christensen et al., “The role of desmin and N-cadherin in effusion cytology: a comparative study using established markers of mesothelial and epithelial cells,” American Journal of Surgical Pathology, vol. 25, no. 11, pp. 1405–1412, 2001. View at Publisher · View at Google Scholar
  13. Y. H. Yang, S. Dudoit, P. Luu et al., “Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation,” Nucleic Acids Research, vol. 30, no. 4, article e15, 2002. View at Google Scholar
  14. C. C. Reed, A. Waterhouse, S. Kirby et al., “Decorin prevents metastatic spreading of breast cancer,” Oncogene, vol. 24, no. 6, pp. 1104–1110, 2005. View at Publisher · View at Google Scholar
  15. P.-J. Aspuria, T. Sato, and F. Tamanoi, “The TSC/Rheb/TOR signaling pathway in fission yeast and mammalian cells: temperature sensitive and constitutive active mutants of TOR,” Cell Cycle, vol. 6, no. 14, pp. 1692–1695, 2007. View at Google Scholar
  16. P. T. Bhaskar and N. Hay, “The two TORCs and Akt,” Developmental Cell, vol. 12, no. 4, pp. 487–502, 2007. View at Publisher · View at Google Scholar
  17. A. Gautreau, D. Louvard, and M. Arpin, “ERM proteins and NF2 tumor suppressor: the Yin and Yang of cortical actin organization and cell growth signaling,” Current Opinion in Cell Biology, vol. 14, no. 1, pp. 104–109, 2002. View at Publisher · View at Google Scholar
  18. K. Krishnan, B. Bruce, S. Hewitt, D. Thomas, C. Khanna, and L. J. Helman, “Ezrin mediates growth and survival in Ewing's sarcoma through the AKT/mTOR, but not the MAPK, signaling pathway,” Clinical and Experimental Metastasis, vol. 23, no. 3-4, pp. 227–236, 2006. View at Publisher · View at Google Scholar
  19. Q. Li, M. Wu, H. Wang et al., “Ezrin silencing by small hairpin RNA reverses metastatic behaviors of human breast cancer cells,” Cancer Letters, vol. 261, no. 1, pp. 55–63, 2008. View at Publisher · View at Google Scholar
  20. B. Bruce, G. Khanna, L. Ren et al., “Expression of the cytoskeleton linker protein ezrin in human cancers,” Clinical and Experimental Metastasis, vol. 24, no. 2, pp. 69–78, 2007. View at Publisher · View at Google Scholar
  21. A. S. Clark, K. West, S. Streicher, and P. A. Dennis, “Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells,” Molecular Cancer Therapeutics, vol. 1, no. 9, pp. 707–717, 2002. View at Google Scholar
  22. B. Bedogni, S. M. Welford, D. S. Cassarino, B. J. Nickoloff, A. J. Giaccia, and M. B. Powell, “The hypoxic microenvironment of the skin contributes to Akt-mediated melanocyte transformation,” Cancer Cell, vol. 8, no. 6, pp. 443–454, 2005. View at Publisher · View at Google Scholar
  23. K. K. L. Chan, N. Wei, S. S. Liu, L. Xiao-Yun, A. N. Cheung, and H. Y. S. Ngan, “Estrogen receptor subtypes in ovarian cancer: a clinical correlation,” Obstetrics and Gynecology, vol. 111, no. 1, pp. 144–151, 2008. View at Publisher · View at Google Scholar
  24. W. H. Dragowska, M. Verreault, D. T. T. Yapp et al., “Decreased levels of hypoxic cells in gefitinib treated ER+HER-2 overexpressing MCF-7 breast cancer tumors are associated with hyperactivation of the mTOR pathway: therapeutic implications for combination therapy with rapamycin,” Breast Cancer Research and Treatment, vol. 106, no. 3, pp. 319–331, 2007. View at Publisher · View at Google Scholar
  25. J. Zhou, J. Wulfkuhle, H. Zhang et al., “Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 41, pp. 16158–16163, 2007. View at Publisher · View at Google Scholar
  26. M. Rosner, M. Hanneder, N. Siegel, A. Valli, and M. Hengstschläger, “The tuberous sclerosis gene products hamartin and tuberin are multifunctional proteins with a wide spectrum of interacting partners,” Mutation Research, vol. 658, no. 3, pp. 234–246, 2008. View at Publisher · View at Google Scholar
  27. R. F. Lamb, C. Roy, T. J. Diefenbach et al., “The TSC1 tumour suppressor hamartin regulates cell adhesion through ERM proteins and the GTPase Rho,” Nature Cell Biology, vol. 2, no. 5, pp. 281–287, 2000. View at Publisher · View at Google Scholar
  28. Y. Mamane, E. Petroulakis, O. LeBacquer, and N. Sonenberg, “mTOR, translation initiation and cancer,” Oncogene, vol. 25, no. 48, pp. 6416–6422, 2006. View at Publisher · View at Google Scholar
  29. K. Jastrzebski, K. M. Hannan, E. B. Tchoubrieva, R. D. Hannan, and R. B. Pearson, “Coordinate regulation of ribosome biogenesis and function by the ribosomal protein S6 kinase, a key mediator of mTOR function,” Growth Factors, vol. 25, no. 4, pp. 209–226, 2007. View at Publisher · View at Google Scholar
  30. J. C. Boughey, R. J. Gonzalez, E. Bonner, and H. M. Kuerer, “Current treatment and clinical trial developments for ductal carcinoma in situ of the breast,” Oncologist, vol. 12, pp. 1276–1287, 2007. View at Google Scholar
  31. L. C. J. Dorssers, S. van der Flier, A. Brinkman et al., “Tamoxifen resistance in breast cancer elucidating mechanisms,” Drugs, vol. 61, no. 12, pp. 1721–1733, 2001. View at Google Scholar
  32. T. van Agthoven, J. Veldscholte, M. Smid et al., “Functional identification of genes causing estrogen independence of human breast cancer cells,” Breast Cancer Research and Treatment, vol. 114, no. 1, pp. 23–30, 2009. View at Publisher · View at Google Scholar
  33. B. D. Cox, M. Natarajan, M. R. Stettner, and C. L. Gladson, “New concepts regarding focal adhesion kinase promotion of cell migration and proliferation,” Journal of Cellular Biochemistry, vol. 99, no. 1, pp. 35–52, 2006. View at Publisher · View at Google Scholar
  34. H. Honda, H. Oda, T. Nakamoto et al., “Cardiovascular anomaly, impaired actin bundling and resistance to Src-induced transformation in mice lacking p130Cas,” Nature Genetics, vol. 19, no. 4, pp. 361–365, 1998. View at Publisher · View at Google Scholar
  35. S. J. Pratt, H. Epple, M. Ward, Y. Feng, V. M. Braga, and G. D. Longmore, “The LIM protein Ajuba influences p130Cas localization and Rac1 activity during cell migration,” Journal of Cell Biology, vol. 168, no. 5, pp. 813–824, 2005. View at Publisher · View at Google Scholar
  36. M. A. Sanders and M. D. Basson, “p130cas but not paxillin is essential for Caco-2 intestinal epithelial cell spreading and migration on collagen IV,” Journal of Biological Chemistry, vol. 280, no. 25, pp. 23516–23522, 2005. View at Publisher · View at Google Scholar
  37. S. Daouti, W.-H. Li, H. Qian et al., “A selective phosphatase of regenerating liver phosphatase inhibitor suppresses tumor cell anchorage-independent growth by a novel mechanism involving p130Cas cleavage,” Cancer Research, vol. 68, no. 4, pp. 1162–1169, 2008. View at Publisher · View at Google Scholar
  38. K. K. L. Chan, N. Wei, S. S. Liu, L. Xiao-Yun, A. N. Cheung, and H. Y. S. Ngan, “Estrogen receptor subtypes in ovarian cancer: a clinical correlation,” Obstetrics and Gynecology, vol. 111, no. 1, pp. 144–151, 2008. View at Publisher · View at Google Scholar
  39. J. S. Park, W. H. Jung, J. K. Kim et al., “Estrogen receptor a, estrogen receptor ß, and progesterone receptor as possible prognostic factor in radically resected gallbladder carcinoma,” Journal of Surgical Research, vol. 152, no. 1, pp. 104–110, 2009. View at Publisher · View at Google Scholar
  40. H. Sugiura, T. Toyama, Y. Hara et al., “Expression of estrogen receptor ß wild-type and its variant ER ßcx/ß2 is correlated with better prognosis in breast cancer,” Japanese Journal of Clinical Oncology, vol. 37, no. 11, pp. 820–828, 2007. View at Publisher · View at Google Scholar
  41. M. Esslimani-Sahla, J. Simony-Lafontaine, A. Kramar et al., “Estrogen receptor ß (ERß) level but not its ERß cx variant helps to predict tamoxifen resistance in breast cancer,” Clinical Cancer Research, vol. 10, no. 17, pp. 5769–5776, 2004. View at Google Scholar
  42. S. Tsukita, M. Furuse, and M. Itoh, “Multifunctional strands in tight junctions,” Nature Reviews Molecular Cell Biology, vol. 2, no. 4, pp. 285–293, 2001. View at Publisher · View at Google Scholar
  43. L. González-Mariscal, A. Betanzos, P. Nava, and B. E. Jaramillo, “Tight junction proteins,” Progress in Biophysics and Molecular Biology, vol. 81, no. 1, pp. 1–44, 2003. View at Publisher · View at Google Scholar
  44. C. M. Van Itallie and J. M. Anderson, “Claudins and epithelial paracellular transport,” Annual Review of Physiology, vol. 68, pp. 403–429, 2006. View at Publisher · View at Google Scholar
  45. M. Furuse, H. Sasaki, K. Fujimoto, and S. Tsukita, “A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occluding in fibroblasts,” The Journal of Cell Biology, vol. 143, pp. 391–401, 1998. View at Google Scholar
  46. L. Kleinberg, A. Holth, C. G. Trope, R. Reich, and B. Davidson, “Claudin upregulation in ovarian carcinoma effusions is associated with poor survival,” Human Pathology, vol. 39, no. 5, pp. 747–757, 2008. View at Publisher · View at Google Scholar
  47. F. Lanigan, E. McKiernan, D. J. Brennan et al., “Increased claudin-4 expression is associated with poor prognosis and high tumour grade in breast cancer,” International Journal of Cancer, vol. 124, no. 9, pp. 2088–2097, 2009. View at Publisher · View at Google Scholar