Table of Contents Author Guidelines Submit a Manuscript
Journal of Oncology
Volume 2011, Article ID 854584, 16 pages
http://dx.doi.org/10.1155/2011/854584
Review Article

Paternal Smoking and Risk of Childhood Acute Lymphoblastic Leukemia: Systematic Review and Meta-Analysis

Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA

Received 16 November 2010; Accepted 8 March 2011

Academic Editor: Sushant Kachhap

Copyright © 2011 Ruiling Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. American Cancer Society, “What are the key statistics for childhood leukemia,” 2010, http://www.cancer.org/Cancer/LeukemiainChildren/DetailedGuide/childhood-leukemia-key-statistics.
  2. M. A. Smith et al., “Leukemia. SEER Pediatric Monograph,” 2010, http://seer.cancer.gov/publications/childhood/leukemia.pdf.
  3. Surveillance Epidemiology and End Results (SEER), “SEER Cancer Statistics Review 1975–2007,” 2010, http://seer.cancer.gov/csr/1975_2007/results_single/sect_28_table.09.pdf.
  4. World Health Organization, “Disease and injury regional estimates for 2004,” 2010, http://www.who.int/healthinfo/global_burden_disease/estimates_regional/en/index.html.
  5. M. Greaves, “Science, medicine, and the future: childhood leukaemia,” British Medical Journal, vol. 324, no. 7332, pp. 283–287, 2002. View at Google Scholar · View at Scopus
  6. T. Eden, “Aetiology of childhood leukaemia,” Cancer Treatment Reviews, vol. 36, no. 4, pp. 286–297, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. H. D. Bailey, B. K. Armstrong, N. H. De Klerk et al., “Exposure to diagnostic radiological procedures and the risk of childhood acute lymphoblastic leukemia,” Cancer Epidemiology Biomarkers and Prevention, vol. 19, no. 11, pp. 2897–2909, 2010. View at Publisher · View at Google Scholar
  8. World Health Organization, “The Tobacco Atlas,” 2010, http://www.who.int/tobacco/statistics/tobacco_atlas/en.
  9. World Health Organization, “Risk factors estimates for 2004,” 2004, http://www.who.int/healthinfo/global_burden_disease/risk_factors/en/index.html.
  10. Center for Disease Control and Prevention, “Cigarette smoking among adults and trends in smoking cessation—United States, 2008,” Morbidity and Mortality Weekly Report, vol. 58, no. 44, pp. 1227–1232, 2009. View at Google Scholar
  11. Center for Disease Control and Prevention, “Smoking-attributable mortality, years of potential life lost, and productivity losses—United States, 2000–2004,” Morbidity and Mortality Weekly Report, vol. 57, no. 45, pp. 1226–1228, 2008. View at Google Scholar
  12. G. Yang, L. Fan, J. Tan et al., “Smoking in China: findings of the 1996 National Prevalence Survey,” Journal of the American Medical Association, vol. 282, no. 13, pp. 1247–1253, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Peto, Z. M. Chen, and J. Boreham, “Tobacco: the growing epidemic in China,” CVD Prevention and Control, vol. 4, no. 1, pp. 61–70, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. Q. Gan, K. R. Smith, S. K. Hammond, and T. W. Hu, “Disease burden of adult lung cancer and ischaemic heart disease from passive tobacco smoking in China,” Tobacco Control, vol. 16, no. 6, pp. 417–422, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. Cal/EPA, Proposed Identification of Environmental Tobacco Smoke as a Toxic Air Contaminant, California Environmental Protection Agency Air Resources Board and Office of Environmental Health Hazard Assessment, Sacramento, Calif, USA, 2005.
  16. M. T. Smith, “Advances in understanding benzene health effects and susceptibility,” Annual Review of Public Health, vol. 31, pp. 133–148, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Zhang, C. Steinmaus, D. A. Eastmond, X. K. Xin, and M. T. Smith, “Formaldehyde exposure and leukemia: a new meta-analysis and potential mechanisms,” Mutation Research, vol. 681, no. 2-3, pp. 150–168, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. International Agency for Research on Cancer (IARC), IARC Monograph on the Evaluation of Carcinogenic Risks to Humans: Tobacco Smoke and Involuntary Smoking, International Agency for Research on Cancer, Lyon, France, 2004.
  19. J. T. Bernert, J. L. Pirkle, Y. Xia, R. B. Jain, D. L. Ashley, and E. J. Sampson, “Urine concentrations of a tobacco-specific nitrosamine carcinogen in the U.S. population from secondhand smoke exposure,” Cancer Epidemiology Biomarkers and Prevention, vol. 19, no. 11, pp. 2969–2977, 2010. View at Publisher · View at Google Scholar
  20. USDHHS, U.S.Department of Health and Human Services. The Health Consequences of Involuntary Exposure to Tobacco Smoke: A Report of the Surgeon General, U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, coordinating Center for Health Promotion, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, Atlanta, Ga, USA, 2006.
  21. J. Brondum, X. O. Shu, M. Steinbuch, R. K. Severson, J. D. Potter, and L. L. Robison, “Parental cigarette smoking and the risk of acute leukemia in children,” Cancer, vol. 85, no. 6, pp. 1380–1388, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. J. D. Buckley et al., “Maternal smoking during pregnancy and the risk of Cchildhood-cancer,” Lancet, vol. 2, no. 8505, pp. 519–520, 1986. View at Google Scholar
  23. J. S. Chang, S. Selvin, C. Metayer, V. Crouse, A. Golembesky, and P. A. Buffler, “Parental smoking and the risk of childhood leukemia,” American Journal of Epidemiology, vol. 163, no. 12, pp. 1091–1100, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Cnattingius, M. M. Zack, A. Ekbom et al., “Prenatal and neonatal risk factors for childhood lymphatic leukemia,” Journal of the National Cancer Institute, vol. 87, no. 12, pp. 908–914, 1995. View at Google Scholar · View at Scopus
  25. P. Cocco, M. Rapallo, R. Targhetta, P. F. Biddau, and D. Fadda, “Analysis of risk factors in a cluster of childhood acute lymphoblastic leukemia,” Archives of Environmental Health, vol. 51, no. 3, pp. 242–244, 1996. View at Google Scholar · View at Scopus
  26. C. Infante-Rivard, M. Krajinovic, D. Labuda, and D. Sinnett, “Parental smoking, CYP1A1 genetic polymorphisms and childhood leukemia (Quebec, Canada),” Cancer Causes and Control, vol. 11, no. 6, pp. 547–553, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. E. M. John, D. A. Savitz, and D. P. Sandler, “Prenatal exposure to parents' smoking and childhood cancer,” American Journal of Epidemiology, vol. 133, no. 2, pp. 123–132, 1991. View at Google Scholar · View at Scopus
  28. A. C. MacArthur, M. L. McBride, J. J. Spinelli, S. Tamaro, R. P. Gallagher, and G. Theriault, “Risk of childhood leukemia associated with parental smoking and alcohol consumption prior to conception and during pregnancy: the cross-Canada childhood leukemia study,” Cancer Causes and Control, vol. 19, no. 3, pp. 283–295, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Magnani, G. Pastore, L. Luzzatto, and B. Terracini, “Parental occupation and other environmental factors in the etiology of leukemias and non-Hodgkin's lymphomas in childhood: a case-control study,” Tumori, vol. 76, no. 5, pp. 413–419, 1990. View at Google Scholar · View at Scopus
  30. F. Menegaux, M. Ripert, D. Hémon, and J. Clavel, “Maternal alcohol and coffee drinking, parental smoking and childhood leukaemia: a French population-based case-control study,” Paediatric and Perinatal Epidemiology, vol. 21, no. 4, pp. 293–299, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Menegaux, C. Steffen, S. Bellec et al., “Maternal coffee and alcohol consumption during pregnancy, parental smoking and risk of childhood acute leukaemia,” Cancer Detection and Prevention, vol. 29, no. 6, pp. 487–493, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Pang, R. McNally, and J. M. Birch, “Parental smoking and childhood cancer: results from the United Kingdom Childhood Cancer Study,” British Journal of Cancer, vol. 88, no. 3, pp. 373–381, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Rudant, F. Menegaux, G. Leverger et al., “Childhood hematopoietic malignancies and parental use of tobacco and alcohol: the ESCALE study (SFCE),” Cancer Causes and Control, vol. 19, no. 10, pp. 1277–1290, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. X. O. Shu, J. A. Ross, T. W. Pendergrass, G. H. Reaman, B. Lampkin, and L. L. Robison, “Parental alcohol consumption, cigarette smoking, and risk of infant leukemia: a Childrens Cancer Group study,” Journal of the National Cancer Institute, vol. 88, no. 1, pp. 24–31, 1996. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Sorahan, R. Lancashire, P. Prior, I. Peck, and A. Stewart, “Childhood cancer and parental use of alcohol and tobacco,” Annals of Epidemiology, vol. 5, no. 5, pp. 354–359, 1995. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Sorahan, R. J. Lancashire, M. A. Hultén, I. Peck, and A. M. Stewart, “Childhood cancer and parental use of tobacco: deaths from 1953 to 1955,” British Journal of Cancer, vol. 75, no. 1, pp. 134–138, 1997. View at Google Scholar · View at Scopus
  37. T. Sorahan, P. A. McKinney, J. R. Mann et al., “Childhood cancer and parental use of tobacco: findings from the inter-regional epidemiological study of childhood cancer (IRESCC),” British Journal of Cancer, vol. 84, no. 1, pp. 141–146, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Sorahan, P. Prior, R. J. Lancashire et al., “Childhood cancer and parental use of tobacco: deaths from 1971 to 1976,” British Journal of Cancer, vol. 76, no. 11, pp. 1525–1531, 1997. View at Google Scholar · View at Scopus
  39. M. Stjernfeldt, K. Berglund, J. Lindsten, and J. Ludvigsson, “Maternal smoking during pregnancy and risk of childhood cancer,” Lancet, vol. 1, no. 8494, pp. 1350–1352, 1986. View at Google Scholar · View at Scopus
  40. L. A. Mucci, F. Granath, and S. Cnattingius, “Maternal smoking and childhood leukemia and lymphoma risk among 1,440,542 Swedish children,” Cancer Epidemiology Biomarkers and Prevention, vol. 13, no. 9, pp. 1528–1533, 2004. View at Google Scholar · View at Scopus
  41. B. T. Ji, X. O. Shu, M. S. Linet et al., “Paternal cigarette smoking and the risk of childhood cancer among offspring of nonsmoking mothers,” Journal of the National Cancer Institute, vol. 89, no. 3, pp. 238–244, 1997. View at Google Scholar · View at Scopus
  42. K. M. Lee, M. H. Ward, S. Han et al., “Paternal smoking, genetic polymorphisms in CYP1A1 and childhood leukemia risk,” Leukemia Research, vol. 33, no. 2, pp. 250–258, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Schüz, P. Kaatsch, U. Kaletsch, R. Meinert, and J. Michaelis, “Association of childhood cancer with factors related to pregnancy and birth,” International Journal of Epidemiology, vol. 28, no. 4, pp. 631–639, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Greenland, “Quantitative methods in the review of epidemiologic literature,” Epidemiologic Reviews, vol. 9, pp. 1–30, 1987. View at Google Scholar · View at Scopus
  45. R. E. Shore, M. J. Gardner, and B. Pannett, “Ethylene oxide: an assessment of the epidemiological evidence on carcinogenicity,” British Journal of Industrial Medicine, vol. 50, no. 11, pp. 971–997, 1993. View at Google Scholar · View at Scopus
  46. R. DerSimonian and N. Laird, “Meta-analysis in clinical trials,” Controlled Clinical Trials, vol. 7, no. 3, pp. 177–188, 1986. View at Google Scholar · View at Scopus
  47. D. Petitti, Meta-analysis, Decision Analysis, and Cost Effective Analysis: Methods for Quantitative Synthesis in Medicine, Oxford University Press, New York, NY, USA, 1994.
  48. J. P. T. Higgins, S. G. Thompson, J. J. Deeks, and D. G. Altman, “Measuring inconsistency in meta-analyses,” British Medical Journal, vol. 327, no. 7414, pp. 557–560, 2003. View at Google Scholar · View at Scopus
  49. P. J. Easterbrook, J. A. Berlin, R. Gopalan, and D. R. Matthews, “Publication bias in clinical research,” Lancet, vol. 337, no. 8746, pp. 867–876, 1991. View at Publisher · View at Google Scholar · View at Scopus
  50. C. B. Begg and M. Mazumdar, “Operating characteristics of a rank correlation test for publication bias,” Biometrics, vol. 50, no. 4, pp. 1088–1101, 1994. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Egger, G. D. Smith, M. Schneider, and C. Minder, “Bias in meta-analysis detected by a simple, graphical test,” British Medical Journal, vol. 315, no. 7109, pp. 629–634, 1997. View at Google Scholar · View at Scopus
  52. S. Greenland, “Quantitative methods in the review of epidemiologic literature,” Epidemiologic Reviews, vol. 9, pp. 1–30, 1987. View at Google Scholar · View at Scopus
  53. W. Q. Wen, X. O. Shu, M. Steinbuch et al., “Paternal military service and risk for childhood leukemia in offspring,” American Journal of Epidemiology, vol. 151, no. 3, pp. 231–240, 2000. View at Google Scholar · View at Scopus
  54. X. O. Shu, Y. T. Gao, L. A. Brinton et al., “A population-based case-control study of childhood leukemia in Shanghai,” Cancer, vol. 62, no. 3, pp. 635–644, 1988. View at Google Scholar · View at Scopus
  55. P. A. McKinney, R. A. Cartwright, and J. M. T. Saiu, “The inter-regional epidemiological study of childhood cancer (IRESCC): a case control study of aetiological factors in leukaemia and lymphoma,” Archives of Disease in Childhood, vol. 62, no. 3, pp. 279–287, 1987. View at Google Scholar · View at Scopus
  56. A. Shah and M. P. Coleman, “Increasing incidence of childhood leukaemia: a controversy re-examined,” British Journal of Cancer, vol. 97, no. 7, pp. 1009–1012, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. M. D. Eisner, J. Klein, S. K. Hammond, G. Koren, G. Lactao, and C. Iribarren, “Directly measured second hand smoke exposure and asthma health outcomes,” Thorax, vol. 60, no. 10, pp. 814–821, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. C. G. Fraga, P. A. Motchnik, A. J. Wyrobek, D. M. Rempel, and B. N. Ames, “Smoking and low antioxidant levels increase oxidative damage to sperm DNA,” Mutation Research, vol. 351, no. 2, pp. 199–203, 1996. View at Publisher · View at Google Scholar · View at Scopus
  59. C. L. Yauk, M. L. Berndt, A. Williams, A. Rowan-Carroll, G. R. Douglas, and M. R. Stämpfli, “Mainstream tobacco smoke causes paternal germ-line DNA mutation,” Cancer Research, vol. 67, no. 11, pp. 5103–5106, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. A. J. Thornton and P. N. Lee, “Parental smoking and risk of childhood cancer: a review of the evidence,” Indoor and Built Environment, vol. 7, no. 2, pp. 65–86, 1998. View at Google Scholar · View at Scopus
  61. J. Beane, P. Sebastiani, G. Liu, J. S. Brody, M. E. Lenburg, and A. Spira, “Reversible and permanent effects of tobacco smoke exposure on airway epithelial gene expression,” Genome Biology, vol. 8, no. 9, article R201, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. F. Schembri, S. Sridhar, C. Perdomo et al., “MicroRNAs as modulators of smoking-induced gene expression changes in human airway epithelium,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 7, pp. 2319–2324, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. J. C. Charlesworth, J. E. Curran, M. P. Johnson et al., “Transcriptomic epidemiology of smoking: the effect of smoking on gene expression in lymphocytes,” BMC Medical Genomics, vol. 3, article 29, 2010. View at Publisher · View at Google Scholar