Table of Contents Author Guidelines Submit a Manuscript
Journal of Oncology
Volume 2012, Article ID 537861, 20 pages
http://dx.doi.org/10.1155/2012/537861
Review Article

Glioma Revisited: From Neurogenesis and Cancer Stem Cells to the Epigenetic Regulation of the Niche

1Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-903 Porto Alegre, RS, Brazil
2Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, 90035-903 Porto Alegre, RS, Brazil
3Children’s Cancer Institute and Pediatric Oncology Unit, Federal University Hospital (HCPA), 90035-903 Porto Alegre, RS, Brazil
4National Institute for Translational Medicine (INCT-TM), 90035-903 Porto Alegre, RS, Brazil
5Department of Internal Medicine, School of Medicine, Federal University of Rio Grande do Sul, 90035-903 Porto Alegre, RS, Brazil
6Medical Sciences Program, School of Medicine, Federal University of Rio Grande do Sul, 90035-903 Porto Alegre, RS, Brazil

Received 10 March 2012; Revised 11 June 2012; Accepted 26 June 2012

Academic Editor: Fabian Benencia

Copyright © 2012 Felipe de Almeida Sassi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Gliomas are the most incident brain tumor in adults. This malignancy has very low survival rates, even when combining radio- and chemotherapy. Among the gliomas, glioblastoma multiforme (GBM) is the most common and aggressive type, and patients frequently relapse or become refractory to conventional therapies. The fact that such an aggressive tumor can arise in such a carefully orchestrated organ, where cellular proliferation is barely needed to maintain its function, is a question that has intrigued scientists until very recently, when the discovery of the existence of proliferative cells in the brain overcame such challenges. Even so, the precise origin of gliomas still remains elusive. Thanks to new advents in molecular biology, researchers have been able to depict the first steps of glioma formation and to accumulate knowledge about how neural stem cells and its progenitors become gliomas. Indeed, GBM are composed of a very heterogeneous population of cells, which exhibit a plethora of tumorigenic properties, supporting the presence of cancer stem cells (CSCs) in these tumors. This paper provides a comprehensive analysis of how gliomas initiate and progress, taking into account the role of epigenetic modulation in the crosstalk of cancer cells with their environment.