Table of Contents Author Guidelines Submit a Manuscript
Journal of Oncology
Volume 2012, Article ID 608406, 10 pages
http://dx.doi.org/10.1155/2012/608406
Review Article

Immune Microenvironment in Tumor Progression: Characteristics and Challenges for Therapy

1Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore Immunology Network (SIgN), Singapore 138648
2Department of Medical Oncology, National Cancer Centre, Singapore

Received 2 March 2012; Revised 18 June 2012; Accepted 2 July 2012

Academic Editor: Fabian Benencia

Copyright © 2012 Valerie Chew et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. T. Chow, A. Möller, and M. J. Smyth, “Inflammation and immune surveillance in cancer,” Seminars in Cancer Biology, vol. 22, no. 1, pp. 23–32, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. M. J. Smyth, G. P. Dunn, and R. D. Schreiber, “Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity,” Advances in Immunology, vol. 90, pp. 1–50, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Euvrard, J. Kanitakis, and A. Claudy, “Skin cancers after organ transplantation,” New England Journal of Medicine, vol. 348, no. 17, pp. 1681–1691, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Q. Sanchez, S. Marubashi, G. Jung et al., “De novo tumors after liver transplantation: a single-institution experience,” Liver Transplantation, vol. 8, no. 3, pp. 285–291, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. F. O. Zwald, L. J. Christenson, E. M. Billingsley et al., “Melanoma in solid organ transplant recipients,” American Journal of Transplantation, vol. 10, no. 5, pp. 1297–1304, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Girardi, D. E. Oppenheim, C. R. Steele et al., “Regulation of cutaneous malignancy by γδ T cells,” Science, vol. 294, no. 5542, pp. 605–609, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. M. J. Smyth, K. Y. T. Thia, S. E. A. Street et al., “Differential tumor surveillance by natural killer (NK) and NKT cells,” Journal of Experimental Medicine, vol. 191, no. 4, pp. 661–668, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. S. E. A. Street, E. Cretney, and M. J. Smyth, “Perforin and interferon-γ activities independently control tumor initiation, growth, and metastasis,” Blood, vol. 97, no. 1, pp. 192–197, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. M. F. Van Den Broek, D. Kägi, F. Ossendorp et al., “Decreased tumor surveillance in perforin-deficient mice,” Journal of Experimental Medicine, vol. 184, no. 5, pp. 1781–1790, 1996. View at Google Scholar · View at Scopus
  10. G. P. Dunn, A. T. Bruce, H. Ikeda, L. J. Old, and R. D. Schreiber, “Cancer immunoediting: from immunosurveillance to tumor escape,” Nature Immunology, vol. 3, no. 11, pp. 991–998, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. A. M. Engel, I. M. Svane, J. Rygaard, and O. Werdelin, “MCA sarcomas induced in scid mice are more immunogenic than MCA sarcomas induced in congenic, immunocompetent mice,” Scandinavian Journal of Immunology, vol. 45, no. 5, pp. 463–470, 1997. View at Google Scholar · View at Scopus
  12. B. B. Aggarwal, “Inflammation, a silent killer in cancer is not so silent!,” Current Opinion in Pharmacology, vol. 9, no. 4, pp. 347–350, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. B. B. Aggarwal, S. Shishodia, S. K. Sandur, M. K. Pandey, and G. Sethi, “Inflammation and cancer: how hot is the link?” Biochemical Pharmacology, vol. 72, no. 11, pp. 1605–1621, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Balkwill and A. Mantovani, “Inflammation and cancer: back to Virchow?” The Lancet, vol. 357, no. 9255, pp. 539–545, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. V. Chew, J. Chen, D. Lee et al., “Chemokine-driven lymphocyte infiltration: an early intratumoural event determining long-term survival in resectable hepatocellular carcinoma,” Gut, vol. 61, no. 3, pp. 427–438, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. D. S. Hsu, M. K. Kim, B. S. Balakumaran et al., “Immune signatures predict prognosis in localized cancer,” Cancer Investigation, vol. 28, no. 7, pp. 765–773, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Suzuki, S. S. Kachala, K. Kadota et al., “Prognostic immune markers in non-small cell lung cancer,” Clinical Cancer Research, vol. 17, no. 16, pp. 5247–5256, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Pagès, J. Galon, M. C. Dieu-Nosjean, E. Tartour, C. Sautès-Fridman, and W. H. Fridman, “Immune infiltration in human tumors: a prognostic factor that should not be ignored,” Oncogene, vol. 29, no. 8, pp. 1093–1102, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Chew, C. Tow, M. Teo et al., “Inflammatory tumour microenvironment is associated with superior survival in hepatocellular carcinoma patients,” Journal of Hepatology, vol. 52, no. 3, pp. 370–379, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. C. E. Weber and P. C. Kuo, “The tumor microenvironment,” Surgical Oncology. In press.
  21. Z. N. Oltvai and A. L. Barabási, “Systems biology: life's complexity pyramid,” Science, vol. 298, no. 5594, pp. 763–764, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. N. A. Bhowmick, E. G. Neilson, and H. L. Moses, “Stromal fibroblasts in cancer initiation and progression,” Nature, vol. 432, no. 7015, pp. 332–337, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature, vol. 407, no. 6801, pp. 249–257, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. S. M. Weis and D. A. Cheresh, “Tumor angiogenesis: molecular pathways and therapeutic targets,” Nature Medicine, vol. 17, no. 11, pp. 1359–1370, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. J. P. Sleeman and W. Thiele, “Tumor metastasis and the lymphatic vasculature,” International Journal of Cancer, vol. 125, no. 12, pp. 2747–2756, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. A. B. Mohseny and P. C. W. Hogendoorn, “Concise review: mesenchymal tumors: when stem cells go mad,” Stem Cells, vol. 29, no. 3, pp. 397–403, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Ostrand-Rosenberg and P. Sinha, “Myeloid-derived suppressor cells: linking inflammation and cancer,” Journal of Immunology, vol. 182, no. 8, pp. 4499–4506, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Mantovani, T. Schioppa, C. Porta, P. Allavena, and A. Sica, “Role of tumor-associated macrophages in tumor progression and invasion,” Cancer and Metastasis Reviews, vol. 25, no. 3, pp. 315–322, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Tosolini, A. Kirilovsky, B. Mlecnik et al., “Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, Th2, Treg, Th17) in patients with colorectal cancer,” Cancer Research, vol. 71, no. 4, pp. 1263–1271, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Wilson and F. Balkwill, “The role of cytokines in the epithelial cancer microenvironment,” Seminars in Cancer Biology, vol. 12, no. 2, pp. 113–120, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Balkwill, “Cancer and the chemokine network,” Nature Reviews Cancer, vol. 4, no. 7, pp. 540–550, 2004. View at Google Scholar · View at Scopus
  32. P. Matzinger, “The danger model: a renewed sense of self,” Science, vol. 296, no. 5566, pp. 301–305, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. G. P. Sims, D. C. Rowe, S. T. Rietdijk, R. Herbst, and A. J. Coyle, “HMGB1 and RAGE in inflammation and cancer,” Annual Review of Immunology, vol. 28, pp. 367–388, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. N. Bercovici and A. Trautmann, “Revisiting the role of T cells in tumor regression,” OncoImmunology, vol. 1, no. 3, pp. 346–350, 2012. View at Google Scholar
  35. M. Melbye, T. R. Cote, L. Kessler, M. Gail, and R. J. Biggar, “High incidence of anal cancer among AIDS patients,” The Lancet, vol. 343, no. 8898, pp. 636–639, 1994. View at Publisher · View at Google Scholar · View at Scopus
  36. D. C. Strauss and J. M. Thomas, “Transmission of donor melanoma by organ transplantation,” The Lancet Oncology, vol. 11, no. 8, pp. 790–796, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Stojanovic and A. Cerwenka, “Natural killer cells and solid tumors,” Journal of Innate Immunity, vol. 3, no. 4, pp. 355–364, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. H. F. Pross and E. Lotzova, “Role of natural killer cells in cancer,” Natural Immunity, vol. 12, no. 4-5, pp. 279–292, 1993. View at Google Scholar · View at Scopus
  39. B. Weigelin, M. Krause, and P. Friedl, “Cytotoxic T lymphocyte migration and effector function in the tumor microenvironment,” Immunology Letters, vol. 138, no. 1, pp. 19–21, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. T. W. H. Flinsenberg, E. B. Compeer, J. J. Boelens, and M. Boes, “Antigen cross-presentation: extending recent laboratory findings to therapeutic intervention,” Clinical and Experimental Immunology, vol. 165, no. 1, pp. 8–18, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. Z. Qin, J. Schwartzkopff, F. Pradera et al., “A critical requirement of interferon γ-mediated angiostasis for tumor rejection by CD8+ T cells,” Cancer Research, vol. 63, no. 14, pp. 4095–4100, 2003. View at Google Scholar · View at Scopus
  42. D. J. DiLillo, K. Yanaba, and T. F. Tedder, “B cells are required for optimal CD4+ and CD8+ T cell tumor immunity: therapeutic B cell depletion enhances B16 melanoma growth in mice,” Journal of Immunology, vol. 184, no. 7, pp. 4006–4016, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. N. Almog, “Molecular mechanisms underlying tumor dormancy,” Cancer Letters, vol. 294, no. 2, pp. 139–146, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Eyles, A. L. Puaux, X. Wang et al., “Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma,” Journal of Clinical Investigation, vol. 120, no. 6, pp. 2030–2039, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. M. J. Browning and W. F. Bodmer, “MHC antigens and cancer: implications for T-cell surveillance,” Current Opinion in Immunology, vol. 4, no. 5, pp. 613–618, 1992. View at Publisher · View at Google Scholar · View at Scopus
  46. J. C. Reed, “Mechanisms of apoptosis avoidance in cancer,” Current Opinion in Oncology, vol. 11, no. 1, pp. 68–75, 1999. View at Publisher · View at Google Scholar · View at Scopus
  47. X. Zhang, D. Nie, and S. Chakrabarty, “Growth factors in tumor microenvironment,” Frontiers in Bioscience, vol. 15, no. 1, pp. 151–165, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Ben-Baruch, “Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators,” Seminars in Cancer Biology, vol. 16, no. 1, pp. 38–52, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. T. F. Gajewski, Y. Meng, and H. Harlin, “Immune suppression in the tumor microenvironment,” Journal of Immunotherapy, vol. 29, no. 3, pp. 233–240, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. B. Huang, J. Zhao, H. Li et al., “Toll-like receptors on tumor cells facilitate evasion of immune surveillance,” Cancer Research, vol. 65, no. 12, pp. 5009–5014, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Goel, D. G. Duda, L. Xu et al., “Normalization of the vasculature for treatment of cancer and other diseases,” Physiological Reviews, vol. 91, no. 3, pp. 1071–1121, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. W. Zou, “Regulatory T cells, tumour immunity and immunotherapy,” Nature Reviews Immunology, vol. 6, no. 4, pp. 295–307, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. G. W. Middleton, N. E. Annels, and H. S. Pandha, “Are we ready to start studies of Th17 cell manipulation as a therapy for cancer?” Cancer Immunology, Immunotherapy, vol. 61, no. 1, pp. 1–7, 2012. View at Publisher · View at Google Scholar · View at Scopus
  54. P. B. Olkhanud, B. Damdinsuren, M. Bodogai et al., “Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4+ T cells to T-regulatory cells,” Cancer Research, vol. 71, no. 10, pp. 3505–3515, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. F. I. Staquicini, A. Tandle, S. K. Libutti et al., “A subset of host B lymphocytes controls melanoma metastasis through a melanoma cell adhesion molecule/MUC18-dependent interaction: evidence from mice and humans,” Cancer Research, vol. 68, no. 20, pp. 8419–8428, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. L. Yang and D. P. Carbone, “Tumor-host immune interactions and dendritic cell dysfunction,” Advances in Cancer Research, vol. 92, pp. 13–27, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. I. Chemin and F. Zoulim, “Hepatitis B virus induced hepatocellular carcinoma,” Cancer Letters, vol. 286, no. 1, pp. 52–59, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Hatakeyama, “Helicobacter pylori and gastric carcinogenesis,” Journal of Gastroenterology, vol. 44, no. 4, pp. 239–248, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Mantovani, “Molecular pathways linking inflammation and cancer,” Current Molecular Medicine, vol. 10, no. 4, pp. 369–373, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. D. R. Hodge, E. M. Hurt, and W. L. Farrar, “The role of IL-6 and STAT3 in inflammation and cancer,” European Journal of Cancer, vol. 41, no. 16, pp. 2502–2512, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. A. S. Payne and L. A. Cornelius, “The role of chemokines in melanoma tumor growth and metastasis,” Journal of Investigative Dermatology, vol. 118, no. 6, pp. 915–922, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. L. Yang, J. Huang, X. Ren et al., “Abrogation of TGFβ signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis,” Cancer Cell, vol. 13, no. 1, pp. 23–35, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. F. Balkwill, “The significance of cancer cell expression of the chemokine receptor CXCR4,” Seminars in Cancer Biology, vol. 14, no. 3, pp. 171–179, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. Y. Ben-Neriah and M. Karin, “Inflammation meets cancer, with NF-κB as the matchmaker,” Nature Immunology, vol. 12, no. 8, pp. 715–723, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Jemal, R. Siegel, E. Ward et al., “Cancer statistics, 2008,” CA Cancer Journal for Clinicians, vol. 58, no. 2, pp. 71–96, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. D. S. Micalizzi and H. L. Ford, “Epithelial-mesenchymal transition in development and cancer,” Future Oncology, vol. 5, no. 8, pp. 1129–1143, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. J. P. Thiery, H. Acloque, R. Y. J. Huang, and M. A. Nieto, “Epithelial-mesenchymal transitions in development and disease,” Cell, vol. 139, no. 5, pp. 871–890, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. P. Savagner, “The epithelial-mesenchymal transition (EMT) phenomenon,” Annals of Oncology, vol. 21, no. 7, pp. vii89–vii92, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. B. Toh, X. Wang, J. Keeble et al., “Mesenchymal transition and dissemination of cancer cells is driven by myeloid-derived suppressor cells infiltrating the primary tumor,” PLoS Biology, vol. 9, no. 9, Article ID e1001162, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Santisteban, J. M. Reiman, M. K. Asiedu et al., “Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells,” Cancer Research, vol. 69, no. 7, pp. 2887–2895, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. A.-K. Bonde, V. Tischler, S. Kumar, A. Soltermann, and R. A. Schwendener, “Intratumoral macrophages contribute to epithelial-mesenchymal transition in solid tumors,” BMC Cancer, vol. 12, article 35, 2012. View at Publisher · View at Google Scholar · View at Scopus
  72. E. Belnoue, C. Guettier, M. Kayibanda et al., “Regression of established liver tumor induced by monoepitopic peptide-based immunotherapy,” Journal of Immunology, vol. 173, no. 8, pp. 4882–4888, 2004. View at Google Scholar · View at Scopus
  73. S. B. Qian, Y. Li, G. X. Qian, and S. S. Chen, “Efficient tumor regression induced by genetically engineered tumor cells secreting interleukin-2 and membrane-expressing allogeneic MHC class I antigen,” Journal of Cancer Research and Clinical Oncology, vol. 127, no. 1, pp. 27–33, 2001. View at Publisher · View at Google Scholar · View at Scopus
  74. Y. Hoshida, A. Villanueva, M. Kobayashi et al., “Gene expression in fixed tissues and outcome in hepatocellular carcinoma,” New England Journal of Medicine, vol. 359, no. 19, pp. 1995–2004, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. A. Budhu, M. Forgues, Q. H. Ye et al., “Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment,” Cancer Cell, vol. 10, no. 2, pp. 99–111, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. J. Galon, A. Costes, F. Sanchez-Cabo et al., “Type, density, and location of immune cells within human colorectal tumors predict clinical outcome,” Science, vol. 313, no. 5795, pp. 1960–1964, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. C. G. Clemente, M. C. Mihm Jr., R. Bufalino, S. Zurrida, P. Collini, and N. Cascinelli, “Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma,” Cancer, vol. 77, no. 7, pp. 1303–1310, 1996. View at Publisher · View at Google Scholar · View at Scopus
  78. R. A. Menegaz, M. A. Michelin, R. M. Etchebehere, P. C. Fernandes, and E. F. C. Murta, “Peri- and intratumoral T and B lymphocytic infiltration in breast cancer,” European Journal of Gynaecological Oncology, vol. 29, no. 4, pp. 321–326, 2008. View at Google Scholar · View at Scopus
  79. L. Zhang, J. R. Conejo-Garcia, D. Katsaros et al., “Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer,” New England Journal of Medicine, vol. 348, no. 3, pp. 203–213, 2003. View at Publisher · View at Google Scholar · View at Scopus
  80. M. C. Dieu-Nosjean, M. Antoine, C. Danel et al., “Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures,” Journal of Clinical Oncology, vol. 26, no. 27, pp. 4410–4417, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. L. Martinet, I. Garrido, T. Filleron et al., “Human solid tumors contain high endothelial venules: association with T- and B-lymphocyte infiltration and favorable prognosis in breast cancer,” Cancer Research, vol. 71, no. 17, pp. 5678–5687, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. C. Schneider, A. Teufel, T. Yevsa et al., “Adaptive immunity suppresses formation and progression of diethylnitrosamine-induced liver cancer,” Gut 2012. In press.
  83. H. Harlin, Y. Meng, A. C. Peterson et al., “Chemokine expression in melanoma metastases associated with CD8+ T-CeII recruitment,” Cancer Research, vol. 69, no. 7, pp. 3077–3085, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. S. Hirano, Y. Iwashita, A. Sasaki, S. Kai, M. Ohta, and S. Kitano, “Increased mRNA expression of chemokines in hepatocellular carcinoma with tumor-infiltrating lymphocytes,” Journal of Gastroenterology and Hepatology, vol. 22, no. 5, pp. 690–696, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Hong, A.-L. Puaux, C. Huang et al., “Chemotherapy induces intratumoral expression of chemokines in cutaneous melanoma, favoring T-cell infiltration and tumor control,” Cancer Research, vol. 71, no. 22, pp. 6997–7009, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. K. Koizumi, S. Hojo, T. Akashi, K. Yasumoto, and I. Saiki, “Chemokine receptors in cancer metastasis and cancer cell-derived chemokines in host immune response,” Cancer Science, vol. 98, no. 11, pp. 1652–1658, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. A. M. Fulton, “The chemokine receptors CXCR4 and CXCR3 in cancer,” Current Oncology Reports, vol. 11, no. 2, pp. 125–131, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. S. A. Quezada, K. S. Peggs, T. R. Simpson, and J. P. Allison, “Shifting the equilibrium in cancer immunoediting: from tumor tolerance to eradication,” Immunological Reviews, vol. 241, no. 1, pp. 104–118, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. T. F. Gajewski, “Cancer immunotherapy,” Molecular Oncology, vol. 6, no. 2, pp. 242–250, 2012. View at Publisher · View at Google Scholar · View at Scopus
  90. A. Mantovani, P. Romero, A. K. Palucka, and F. M. Marincola, “Tumour immunity: effector response to tumour and role of the microenvironment,” The Lancet, vol. 371, no. 9614, pp. 771–783, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. B. Bodey, “Spontaneous regression of neoplasms: new possibilities for immunotherapy,” Expert Opinion on Biological Therapy, vol. 2, no. 5, pp. 459–476, 2002. View at Publisher · View at Google Scholar · View at Scopus
  92. L. V. Kalialis, K. T. Drzewiecki, and H. Klyver, “Spontaneous regression of metastases from melanoma: review of the literature,” Melanoma Research, vol. 19, no. 5, pp. 275–282, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. F. Saleh, W. Renno, I. Klepacek et al., “Direct evidence on the immune-mediated spontaneous regression of human cancer: an incentive for pharmaceutical companies to develop novel anti-cancer vaccine,” Current Pharmaceutical Design, vol. 11, no. 27, pp. 3531–3543, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. S. A. Rosenberg and M. E. Dudley, “Adoptive cell therapy for the treatment of patients with metastatic melanoma,” Current Opinion in Immunology, vol. 21, no. 2, pp. 233–240, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. A. Gillgrass and A. Ashkar, “Stimulating natural killer cells to protect against cancer: recent developments,” Expert Review of Clinical Immunology, vol. 7, no. 3, pp. 367–382, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. S. K. Lee and S. Gasser, “The role of natural killer cells in cancer therapy,” Frontiers in Bioscience, vol. 2, pp. 380–391, 2010. View at Google Scholar · View at Scopus
  97. K. L. Alderson and P. M. Sondel, “Clinical cancer therapy by NK cells via antibody-dependent cell-mediated cytotoxicity,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 379123, 7 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. T. H. Schreiber, L. Raez, J. D. Rosenblatt, and E. R. Podack, “Tumor immunogenicity and responsiveness to cancer vaccine therapy: the state of the art,” Seminars in Immunology, vol. 22, no. 3, pp. 105–112, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. C. L. Slingluff, “The present and future of peptide vaccines for cancer: single or multiple, long or short, alone or in combination?” Cancer Journal, vol. 17, no. 5, pp. 343–350, 2011. View at Publisher · View at Google Scholar · View at Scopus
  100. P. W. Kantoff, C. S. Higano, N. D. Shore et al., “Sipuleucel-T immunotherapy for castration-resistant prostate cancer,” New England Journal of Medicine, vol. 363, no. 5, pp. 411–422, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. G. Farrell, “Prevention of hepatocellular carcinoma in the Asia-Pacific region: consensus statements,” Journal of Gastroenterology and Hepatology, vol. 25, no. 4, pp. 657–663, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. M. A. Kane, “Global implementation of human papillomavirus (HPV) vaccine: lessons from hepatitis B vaccine,” Gynecologic Oncology, vol. 117, no. 2, pp. S32–S35, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. M. H. Chang, “Hepatitis B virus and cancer prevention,” Recent Results in Cancer Research, vol. 188, pp. 75–84, 2011. View at Publisher · View at Google Scholar · View at Scopus
  104. A. E. Albers, B. Siniković, A. V. Banko, S. Jovanović, and A. M. Kaufmann, “Developments in therapeutic human papillomavirus vaccination,” Acta chirurgica Iugoslavica, vol. 56, no. 3, pp. 29–37, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. R. Roden, A. Monie, and T. C. Wu, “The impact of preventive HPV vaccination,” Discovery medicine, vol. 6, no. 35, pp. 175–181, 2006. View at Google Scholar · View at Scopus
  106. F. Moschella, E. Proietti, I. Capone, and F. Belardelli, “Combination strategies for enhancing the efficacy of immunotherapy in cancer patients,” Annals of the New York Academy of Sciences, vol. 1194, pp. 169–178, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. G. K. Antony and A. Z. Dudek, “Interleukin 2 in cancer therapy,” Current Medicinal Chemistry, vol. 17, no. 29, pp. 3297–3302, 2010. View at Google Scholar · View at Scopus
  108. A. J. Grillo-López, C. A. White, B. K. Dallaire et al., “Rituximab: the first monoclonal antibody approved for the treatment of lymphoma,” Current Pharmaceutical Biotechnology, vol. 1, no. 1, pp. 1–9, 2000. View at Google Scholar · View at Scopus
  109. G. N. Hortobagyi, “Trastuzumab in the treatment of breast cancer,” New England Journal of Medicine, vol. 353, no. 16, pp. 1734–1736, 2005. View at Publisher · View at Google Scholar · View at Scopus
  110. A. L. D. De Cerio, N. Zabalegui, M. Rodríguez-Calvillo, S. Inogés, and M. Bendandi, “Anti-idiotype antibodies in cancer treatment,” Oncogene, vol. 26, no. 25, pp. 3594–3602, 2007. View at Publisher · View at Google Scholar · View at Scopus
  111. T. Meyer and E. Stockfleth, “Clinical investigations of Toll-like receptor agonists,” Expert Opinion on Investigational Drugs, vol. 17, no. 7, pp. 1051–1065, 2008. View at Publisher · View at Google Scholar · View at Scopus
  112. S. Adams, “Toll-like receptor agonists in cancer therapy,” Immunotherapy, vol. 1, no. 6, pp. 949–964, 2009. View at Publisher · View at Google Scholar · View at Scopus
  113. S. M. Garland, “Imiquimod,” Current Opinion in Infectious Diseases, vol. 16, no. 2, pp. 85–89, 2003. View at Google Scholar · View at Scopus
  114. M. Urosevic and R. Dummer, “Role of imiquimod in skin cancer treatment,” American Journal of Clinical Dermatology, vol. 5, no. 6, pp. 453–458, 2004. View at Publisher · View at Google Scholar · View at Scopus
  115. B. Rubin and J. E. Gairin, “Concepts and ways to amplify the antitumor immune response,” Current Topics in Microbiology and Immunology, vol. 344, pp. 97–128, 2011. View at Publisher · View at Google Scholar · View at Scopus
  116. S. E. Braun, K. Chen, R. G. Foster et al., “The CC chemokine CKβ-11/MIP-3β/ELC/exodus 3 mediates tumor rejection of murine breast cancer cells through NK cells,” Journal of Immunology, vol. 164, no. 8, pp. 4025–4031, 2000. View at Google Scholar · View at Scopus
  117. L. Baitsch, P. Baumgaertner, E. Devêvre et al., “Exhaustion of tumor-specific CD8+ T cells in metastases from melanoma patients,” Journal of Clinical Investigation, vol. 121, no. 6, pp. 2350–2360, 2011. View at Publisher · View at Google Scholar · View at Scopus
  118. C. A. Klebanoff, N. Acquavella, Z. Yu, and N. P. Restifo, “Therapeutic cancer vaccines: are we there yet?” Immunological Reviews, vol. 239, no. 1, pp. 27–44, 2011. View at Publisher · View at Google Scholar · View at Scopus
  119. F. Hirano, K. Kaneko, H. Tamura et al., “Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity,” Cancer Research, vol. 65, no. 3, pp. 1089–1096, 2005. View at Google Scholar · View at Scopus
  120. G. Dotti, “Blocking PD-1 in cancer immunotherapy,” Blood, vol. 114, no. 8, pp. 1457–1458, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. E. J. Lipson and C. G. Drake, “Ipilimumab: an anti-CTLA-4 antibody for metastatic melanoma,” Clinical Cancer Research, vol. 17, no. 22, pp. 6958–6962, 2011. View at Publisher · View at Google Scholar · View at Scopus
  122. P. A. Prieto, J. C. Yang, R. M. Sherry et al., “CTLA-4 blockade with ipilimumab: long-term follow-up of 177 patients with metastatic melanoma,” Clinical Cancer Research, vol. 18, no. 7, pp. 2039–2047, 2012. View at Publisher · View at Google Scholar · View at Scopus
  123. P. DeLong, T. Tanaka, R. Kruklitis et al., “Use of cyclooxygenase-2 inhibition to enhance the efficacy of immunotherapy,” Cancer Research, vol. 63, no. 22, pp. 7845–7852, 2003. View at Google Scholar · View at Scopus
  124. W. Dempke, C. Rie, A. Grothey, and H. J. Schmoll, “Cyclooxygenase-2: a novel target for cancer chemotherapy?” Journal of Cancer Research and Clinical Oncology, vol. 127, no. 7, pp. 411–417, 2001. View at Publisher · View at Google Scholar · View at Scopus
  125. J. Dannull, Z. Su, D. Rizzieri et al., “Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells,” Journal of Clinical Investigation, vol. 115, no. 12, pp. 3623–3633, 2005. View at Publisher · View at Google Scholar · View at Scopus
  126. M. A. Morse, A. C. Hobeika, T. Osada et al., “Depletion of human regulatory T cells specifically enhances antigen-specific immune responses to cancer vaccines,” Blood, vol. 112, no. 3, pp. 610–618, 2008. View at Publisher · View at Google Scholar · View at Scopus
  127. N. Woller, S. Knocke, B. Mundt et al., “Virus-induced tumor inflammation facilitates effective DC cancer immunotherapy in a Treg-dependent manner in mice,” Journal of Clinical Investigation, vol. 121, no. 7, pp. 2570–2582, 2011. View at Publisher · View at Google Scholar · View at Scopus
  128. L. Zitvogel, L. Apetoh, F. Ghiringhelli, F. André, A. Tesniere, and G. Kroemer, “The anticancer immune response: indispensable for therapeutic success?” Journal of Clinical Investigation, vol. 118, no. 6, pp. 1991–2001, 2008. View at Publisher · View at Google Scholar · View at Scopus
  129. V. P. Balachandran, M. J. Cavnar, S. Zeng et al., “Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido,” Nature Medicine, vol. 17, no. 9, pp. 1094–1100, 2011. View at Publisher · View at Google Scholar · View at Scopus
  130. Q. Li, R. R. Rao, K. Araki et al., “A central role for mTOR kinase in homeostatic proliferation induced CD8+ T cell memory and tumor immunity,” Immunity, vol. 34, no. 4, pp. 541–553, 2011. View at Publisher · View at Google Scholar · View at Scopus
  131. S. Gasser and D. Raulet, “The DNA damage response, immunity and cancer,” Seminars in Cancer Biology, vol. 16, no. 5, pp. 344–347, 2006. View at Publisher · View at Google Scholar · View at Scopus
  132. L. Zitvogel, O. Kepp, and G. Kroemer, “Immune parameters affecting the efficacy of chemotherapeutic regimens,” Nature Reviews Clinical Oncology, vol. 8, no. 3, pp. 151–160, 2011. View at Publisher · View at Google Scholar · View at Scopus
  133. G. Bocci, K. C. Nicolaou, and R. S. Kerbel, “Protracted low-dose effects on human endothelial cell proliferation and survival in vitro reveal a selective antiangiogenic window for various chemotherapeutic drugs,” Cancer Research, vol. 62, no. 23, pp. 6938–6943, 2002. View at Google Scholar · View at Scopus
  134. R. A. Lake and B. W. S. Robinson, “Immunotherapy and chemotherapy—a practical partnership,” Nature Reviews Cancer, vol. 5, no. 5, pp. 397–405, 2005. View at Publisher · View at Google Scholar · View at Scopus