Table of Contents Author Guidelines Submit a Manuscript
Journal of Oncology
Volume 2013, Article ID 897025, 12 pages
http://dx.doi.org/10.1155/2013/897025
Research Article

Mammalian Target of Rapamycin Inhibitors Induce Tumor Cell Apoptosis In Vivo Primarily by Inhibiting VEGF Expression and Angiogenesis

1Department of Hematology-Oncology, West Los Angeles VA Medical Center, Los Angeles, CA 90073, USA
2Department of Medicine, The Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA

Received 16 November 2012; Accepted 28 January 2013

Academic Editor: Rolf Bjerkvig

Copyright © 2013 Patrick Frost et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. B. Atkins, M. Hidalgo, W. M. Stadler et al., “Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma,” Journal of Clinical Oncology, vol. 22, no. 5, pp. 909–918, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Hudes, M. Carducci, P. Tomczak et al., “Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma,” The New England Journal of Medicine, vol. 356, pp. 2271–2281, 2007. View at Google Scholar
  3. A. Younes and N. Samad, “Utility of mTOR inhibition in hematologic malignancies,” Oncologist, vol. 16, no. 6, pp. 730–741, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Raje, S. Kumar, T. Hideshima et al., “Combination of the mTOR inhibitor rapamycin and CC-5013 has synergistic activity in multiple myeloma,” Blood, vol. 104, no. 13, pp. 4188–4193, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Zangari, F. Cavallo, and G. Tricot, “Farnesyltransferase inhibitors and rapamycin in the treatment of multiple myeloma,” Current Pharmaceutical Biotechnology, vol. 7, no. 6, pp. 449–453, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Frost, F. Moatamed, B. Hoang et al., “In vivo antitumor effects of the mTOR inhibitor CCI-779 against human multiple myeloma cells in a xenograft model,” Blood, vol. 104, no. 13, pp. 4181–4187, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Strömberg, A. Dimberg, A. Hammarberg et al., “Rapamycin sensitizes multiple myeloma cells to apoptosis induced by dexamethasone,” Blood, vol. 103, no. 8, pp. 3138–3147, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Yan, P. Frost, Y. Shi et al., “Mechanism by which mammalian target of rapamycin inhibitors sensitize multiple myeloma cells to dexamethasone-induced apoptosis,” Cancer Research, vol. 66, no. 4, pp. 2305–2313, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Frost, Y. Shi, B. Hoang, and A. Lichtenstein, “AKT activity regulates the ability of mTOR inhibitors to prevent angiogenesis and VEGF expression in multiple myeloma cells,” Oncogene, vol. 26, no. 16, pp. 2255–2262, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Ikezoe, C. Nishioka, T. Tasaka et al., “The antitumor effects of sunitinib (formerly SU11248) against a variety of human hematologic malignancies: enhancement of growth inhibition via inhibition of mammalian target of rapamcycin signaling,” Molecular Cancer Therapeutics, vol. 5, no. 10, pp. 2522–2530, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Shi, J. H. Hsu, L. Hu, J. Gera, and A. Lichtenstein, “Signal pathways involved in activation of p70S6K and phosphorylation of 4E-BP1 following exposure of multiple myeloma tumor cells to interleukin-6,” Journal of Biological Chemistry, vol. 277, no. 18, pp. 15712–15720, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Shi, J. Gera, L. Hu et al., “Enhanced sensitivity of multiple myeloma cells containing PTEN mutations to CCI-779,” Cancer Research, vol. 62, no. 17, pp. 5027–5034, 2002. View at Google Scholar · View at Scopus
  13. T. E. Witzig, S. M. Geyer, I. Ghobrial et al., “Phase II trial of single-agent temsirolimus (CCI-779) for relapsed mantle cell lymphoma,” Journal of Clinical Oncology, vol. 23, no. 23, pp. 5347–5356, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. S. M. Smith, K. van Besien, T. Karrison et al., “Temsirolimus has activity in non-mantle cell non-Hodgkin's lymphoma subtypes: the University of Chicago phase II consortium,” Journal of Clinical Oncology, vol. 28, no. 31, pp. 4740–4746, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. J. F. Gera, I. K. Mellinghoff, Y. Shi et al., “AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression,” Journal of Biological Chemistry, vol. 279, no. 4, pp. 2737–2746, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Kullmann, U. Göpfert, B. Siewe, and L. Hengst, “ELAV/Hu proteins inhibit p27 translation via an IRES element in the p27 5′UTR,” Genes and Development, vol. 16, no. 23, pp. 3087–3099, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. W. K. Miskimins, G. Wang, M. Hawkinson, and R. Miskimins, “Control of cyclin-dependent kinase inhibitor p27 expression by cap-independent translation,” Molecular and Cellular Biology, vol. 21, no. 15, pp. 4960–4967, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. R. LeBlanc, L. P. Catley, T. Hideshima et al., “Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model,” Cancer Research, vol. 62, no. 17, pp. 4996–5000, 2002. View at Google Scholar · View at Scopus
  19. M. S. Neshat, I. K. Mellinghoff, C. Tran et al., “Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 18, pp. 10314–10319, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Frost, Y. Shi, B. Hoang, J. Gera, and A. Lichtenstein, “Regulation of D-cyclin translation inhibition in myeloma cells treated with mammalian target of rapamycin inhibitors: rationale for combined treatment with extracellular signal-regulated kinase inhibitors and rapamycin,” Molecular Cancer Therapeutics, vol. 8, no. 1, pp. 83–93, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Ackler, Y. Xiao, M. J. Mitten et al., “ABT-263 and rapamycin act cooperatively to kill lymphoma cells in vitro and in vivo,” Molecular Cancer Therapeutics, vol. 7, no. 10, pp. 3265–3274, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Jiang, J. Coleman, R. Miskimins, R. Srinivasan, and W. K. Miskimins, “Cap-independent translation through the p27 5′-UTR,” Nucleic Acids Research, vol. 35, no. 14, pp. 4767–4778, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. M. E. Feldman, B. Apsel, A. Uotila et al., “Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2,” PLoS Biology, vol. 7, no. 2, article e38, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Yu, C. Shi, L. Toral-Barza et al., “Beyond rapalog therapy: preclinical pharmacology and antitumor activity of WYE-125132, an ATP-competitive and specific inhibitor of mTORC1 and mTORC2,” Cancer Research, vol. 70, no. 2, pp. 621–631, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Hoang, P. Frost, Y. Shi et al., “Targeting TORC2 in multiple myeloma with a new mTOR kinase inhibitor,” Blood, vol. 116, no. 22, pp. 4560–4568, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. B. L. Falcon, S. Barr, P. C. Gokhale et al., “Reduced VEGF production, angiogenesis, and vascular regrowth contribute to the antitumor properties of dual mTORC1/mTORC2 inhibitors,” Cancer Research, vol. 71, no. 5, pp. 1573–1583, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Del Bufalo, L. Ciuffreda, D. Trisciuoglio et al., “Antiangiogenic potential of the mammalian target of rapamycin inhibitor temsirolimus,” Cancer Research, vol. 66, no. 11, pp. 5549–5554, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. Q. Xue, B. Hopkins, C. Perruzzi, D. Udayakumar, D. Sherris, and L. E. Benjamin, “Palomid 529, a novel small-molecule drug, is a TORC1/TORC2 inhibitor that reduces tumor growth, tumor angiogenesis, and vascular permeability,” Cancer Research, vol. 68, no. 22, pp. 9551–9557, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. W. Chen, T. Ma, X. N. Shen et al., “Macrophage-induced tumor angiogenesis is regulated by the TSC2-mTOR pathway,” Cancer Research, vol. 72, pp. 1363–1372, 2012. View at Publisher · View at Google Scholar
  30. I. Stein, A. Itin, P. Einat, R. Skaliter, Z. Grossman, and E. Keshet, “Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia,” Molecular and Cellular Biology, vol. 18, no. 6, pp. 3112–3119, 1998. View at Google Scholar · View at Scopus
  31. A. G. Bert, R. Grépin, M. A. Vadas, and G. J. Goodall, “Assessing IRES activity in the HIF-1α and other cellular 5′ UTRs,” RNA, vol. 12, no. 6, pp. 1074–1083, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. R. M. Young, S. J. Wang, J. D. Gordan, X. Ji, S. A. Liebhaber, and M. C. Simon, “Hypoxia-mediated selective mRNA translation by an internal ribosome entry site-independent mechanism,” Journal of Biological Chemistry, vol. 283, no. 24, pp. 16309–16319, 2008. View at Publisher · View at Google Scholar · View at Scopus