Table of Contents Author Guidelines Submit a Manuscript
Journal of Obesity
Volume 2011 (2011), Article ID 186368, 4 pages
http://dx.doi.org/10.1155/2011/186368
Clinical Study

Rs9939609 Variant of the Fat Mass and Obesity-Associated Gene and Trunk Obesity in Adolescents

1Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria
2Department of Pediatrics, Paracelsus Private Medical University Salzburg, 5020 Salzburg, Austria
3Institute of Physiological Chemistry, Center of Physiological Medicine, Medical University of Graz, 8036 Graz, Austria

Received 10 November 2010; Revised 15 December 2010; Accepted 21 December 2010

Academic Editor: Francesco Saverio Papadia

Copyright © 2011 Harald Mangge et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. W. Haslam and W. P. T. James, “Obesity,” Lancet, vol. 366, no. 9492, pp. 1197–1209, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Mangge, K. Schauenstein, L. Stroedter, A. Griesl, W. Maerz, and M. Borkenstein, “Low grade inflammation in juvenile obesity and type 1 diabetes associated with early signs of atherosclerosis,” Experimental and Clinical Endocrinology and Diabetes, vol. 112, no. 7, pp. 378–382, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Pilz, R. Horejsi, R. Möller et al., “Early atherosclerosis in obese juveniles is associated with low serum levels of adiponectin,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 8, pp. 4792–4796, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Mangge, G. Almer, M. Truschnig-Wilders, A. Schmidt, R. Gasser, and D. Fuchs, “Inflammation, adiponectin, obesity and cardiovascular risk,” Current Medicinal Chemistry, vol. 17, no. 36, pp. 4511–4520, 2010. View at Google Scholar
  5. R. Fredriksson, M. Hägglund, P. K. Olszewski et al., “The obesity gene, FTO, is of ancient origin, up-regulated during food deprivation and expressed in neurons of feeding-related nuclei of the brain,” Endocrinology, vol. 149, no. 5, pp. 2062–2071, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Wahlen, E. Sjölin, and J. Hoffstedt, “The common rs9939609 gene variant of the fat mass- and obesity-associated gene FTO is related to fat cell lipolysis,” Journal of Lipid Research, vol. 49, no. 3, pp. 607–611, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Dina, D. Meyre, S. Gallina et al., “Variation in FTO contributes to childhood obesity and severe adult obesity,” Nature Genetics, vol. 39, no. 6, pp. 724–726, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. T. M. Frayling, N. J. Timpson, M. N. Weedon et al., “A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity,” Science, vol. 316, no. 5826, pp. 889–894, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. R. A. Price, W. D. Li, and H. Zhao, “FTO gene SNPs associated with extreme obesity in cases, controls and extremely discordant sister pairs,” BMC Medical Genetics, vol. 9, Article ID 4, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Li, Y. Wu, R. J. F. Loos et al., “Variants in the fat mass- and obesity-associated (FTO) gene are not associated with obesity in a Chinese Han population,” Diabetes, vol. 57, no. 1, pp. 264–268, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. D. R. Matthews, J. P. Hosker, and A. S. Rudenski, “Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man,” Diabetologia, vol. 28, no. 7, pp. 412–419, 1985. View at Google Scholar
  12. B. R. Winkelmann, W. März, B. O. Boehm et al., “Rationale and design of the LURIC study—a resource for functional genomics, pharmacogenomics and long-term prognosis of cardiovascular disease,” Pharmacogenomics, vol. 2, no. 1, pp. S1–S73, 2001. View at Google Scholar · View at Scopus
  13. S. Kiechl and J. Willeit, “The natural course of atherosclerosis. Part II: vascular remodeling,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 19, no. 6, pp. 1491–1498, 1999. View at Google Scholar
  14. R. Möller, E. Tafeit, T. R. Pieber, K. Sudi, and G. Reibnegger, “Measurement of subcutaneous adipose tissue topography (SAT-Top) by means of a new optical device, LIPOMETER, and the evaluation of standard factor coefficients in healthy subjects,” American Journal of Human Biology, vol. 12, no. 2, pp. 231–239, 2000. View at Google Scholar · View at Scopus