Table of Contents Author Guidelines Submit a Manuscript
Corrigendum

A corrigendum for this article has been published. To view the corrigendum, please click here.

Journal of Obesity
Volume 2011, Article ID 269043, 4 pages
http://dx.doi.org/10.1155/2011/269043
Research Article

Sequence Analysis of the UCP1 Gene in a Severe Obese Population from Southern Italy

1Fondazione IRCCS SDN, Istituto di Ricerca Diagnostica e Nucleare, Via Gianturco 113, 80143 Naples, Italy
2Centro Interuniversitario di Studi e Ricerche sull'Obesità e Dipartimento di Medicina Clinica e Sperimentale, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131 Naples, Italy
3CEINGE Biotecnologie Avanzate S.C. a R.L., Via Gaetano Salvatore 486, 80145, Naples, Italy
4Dipartimento di Biochimica e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, Via Pansini 5, 80131 Naples, Italy
5Fondazione Stella Maris Mediterraneo, Centro Disturbi del Comportamento Alimentare e del Peso “G. Gioia”, Chiaromonte, C/da S. Lucia, 85100, Chiaromonte, Potenza, Italy
6Dipartimento di Scienze Mediche Preventive, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131 Naples, Italy

Received 1 December 2010; Accepted 8 April 2011

Academic Editor: Francesco Saverio Papadia

Copyright © 2011 Giuseppe Labruna et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. R. Farmer, “Molecular determinants of brown adipocyte formation and function,” Genes and Development, vol. 22, no. 10, pp. 1269–1275, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. M. C. Zingaretti, F. Crosta, A. Vitali et al., “The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue,” The FASEB Journal, vol. 23, no. 9, pp. 3113–3120, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Rosenbaum and R. L. Leibel, “Adaptive thermogenesis in humans,” International Journal of Obesity, vol. 34, pp. S47–S55, 2010. View at Google Scholar
  4. B. Cannon and J. Nedergaard, “Metabolic consequences of the presence or absence of the thermogenic capacity of brown adipose tissue in mice (and probably in humans),” International Journal of Obesity, vol. 34, pp. S7–S16, 2010. View at Google Scholar
  5. A. Frontini and S. Cinti, “Distribution and development of brown adipocytes in the murine and human adipose organ,” Cell Metabolism, vol. 11, no. 4, pp. 253–256, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Enerbäck, “Brown adipose tissue in humans,” International Journal of Obesity, vol. 34, pp. S43–S46, 2010. View at Google Scholar
  7. K. A. Virtanen, M. E. Lidell, J. Orava et al., “Functional brown adipose tissue in healthy adults,” The New England Journal of Medicine, vol. 360, no. 15, pp. 1518–1525, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. A. M. Cypess, S. Lehman, G. Williams et al., “Identification and importance of brown adipose tissue in adult humans,” The New England Journal of Medicine, vol. 360, no. 15, pp. 1509–1517, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. S. A. Urhammer, M. Fridberg, T. I. Sørensen et al., “Studies of genetic variability of the uncoupling protein 1 gene in Caucasian subjects with juvenile-onset obesity,” Journal of Clinical Endocrinology and Metabolism, vol. 82, no. 12, pp. 4069–4074, 1997. View at Google Scholar · View at Scopus
  10. S. Costford, A. Gowing, and M. E. Harper, “Mitochondrial uncoupling as a target in the treatment of obesity,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 10, no. 6, pp. 671–678, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Nedergaard and B. Cannon, “The changed metabolic world with human brown adipose tissue: therapeutic visions,” Cell Metabolism, vol. 11, no. 4, pp. 268–272, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Kontani, Y. Wang, K. Kimura et al., “UCP1 deficiency increases susceptibility to diet-induced obesity with age,” Aging Cell, vol. 4, no. 3, pp. 147–155, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. H. M. Feldmann, V. Golozoubova, B. Cannon, and J. Nedergaard, “UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality,” Cell Metabolism, vol. 9, no. 2, pp. 203–209, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Labruna, F. Pasanisi, C. Nardelli et al., “UCP1 -3826 AG+GG genotypes, adiponectin, and leptin/adiponectin ratio in severe obesity,” Journal of Endocrinological Investigation, vol. 32, no. 6, pp. 525–529, 2009. View at Google Scholar · View at Scopus
  15. J. C. Barrett, B. Fry, J. Maller, and M. J. Daly, “Haploview: analysis and visualization of LD and haplotype maps,” Bioinformatics, vol. 21, no. 2, pp. 263–265, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. F. O. Desmet, D. Hamroun, M. Lalande, G. Collod-Béroud, M. Claustres, and C. Béroud, “Human splicing finder: an online bioinformatics tool to predict splicing signals,” Nucleic Acids Research, vol. 37, no. 9, article e67, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Jiménez-Jiménez, R. Zardoya, A. Ledesma et al., “Evolutionarily distinct residues in the uncoupling protein UCP1 are essential for its characteristic basal proton conductance,” Journal of Molecular Biology, vol. 359, no. 4, pp. 1010–1022, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Mori, H. Okazawa, K. Iwamoto, E. Maeda, M. Hashiramoto, and M. Kasuga, “A polymorphism in the 5' untranslated region and a Met229>Leu variant in exon 5 of the human UCP1 gene are associated with susceptibility to type II diabetes mellitus,” Diabetologia, vol. 44, no. 3, pp. 373–376, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Hamann, J. Tafel, B. Büsing, H. Münzberg, A. Hinney, H. Mayer et al., “Analysis of the uncoupling protein-1 (UCP1) gene in obese and lean subjects: identification of four amino acid variants,” International Journal of Obesity, vol. 22, no. 9, pp. 939–941, 1998. View at Google Scholar
  20. K. S. Vimaleswaran, V. Radha, R. Deepa, and V. Mohan, “Absence of association of metabolic syndrome with PPARGC1A, PPARG and UCP1 gene polymorphisms in Asian Indians,” Metabolic Syndrome and Related Disorders, vol. 5, no. 2, pp. 153–162, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Fukuyama, T. Ohara, Y. Hirota et al., “Association of the -112A>C polymorphism of the uncoupling protein 1 gene with insulin resistance in Japanese individuals with type 2 diabetes,” Biochemical and Biophysical Research Communications, vol. 339, no. 4, pp. 1212–1216, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. M. H. Cha, B. K. Kang, D. Suh, K. S. Kim, Y. Yang, and Y. Yoon, “Association of UCP1 genetic polymorphisms with blood pressure among Korean female subjects,” Journal of Korean Medical Science, vol. 23, no. 5, pp. 776–780, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. W. D. van Marken Lichtenbelt, J. W. Vanhommerig, N. M. Smulders et al., “Cold-activated brown adipose tissue in healthy men,” The New England Journal of Medicine, vol. 360, no. 15, pp. 1500–1508, 2009. View at Publisher · View at Google Scholar · View at Scopus