Table of Contents Author Guidelines Submit a Manuscript
Journal of Obesity
Volume 2011 (2011), Article ID 283153, 4 pages
http://dx.doi.org/10.1155/2011/283153
Research Article

An Obesity Risk SNP (rs17782313) near the MC4R Gene Is Associated with Cerebrocortical Insulin Resistance in Humans

1Department of Internal Medicine IV, University of Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
2Eli Lilly and Company, Lilly Deutschland GmbH, 61352 Bad Homburg, Germany
3Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany
4Department of Obstetrics and Gynecology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA

Received 30 November 2010; Revised 2 March 2011; Accepted 4 April 2011

Academic Editor: Jack A. Yanovski

Copyright © 2011 Otto Tschritter et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. G. Mountjoy, M. T. Mortrud, M. J. Low, R. B. Simerly, and R. D. Cone, “Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain,” Molecular Endocrinology, vol. 8, no. 10, pp. 1298–1308, 1994. View at Google Scholar
  2. L. Roselli-Rehfuss, K. G. Mountjoy, L. S. Robbins et al., “Identification of a receptor for gamma melanotropin and other proopiomelanocortin peptides in the hypothalamus and limbic system,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, pp. 8856–8860, 1993. View at Google Scholar
  3. D. Huszar, C. A. Lynch, V. Fairchild-Huntress et al., “Targeted disruption of the melanocortin-4 receptor results in obesity in mice,” Cell, vol. 88, no. 1, pp. 131–141, 1997. View at Google Scholar · View at Scopus
  4. G. S. Yeo, I. S. Farooqi, S. Aminian, D. J. Halsall, R. G. Stanhope, and S. O'Rahilly, “A frameshift mutation in MC4R associated with dominantly inherited human obesity,” Nature Genetics, vol. 20, no. 2, pp. 111–112, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Vaisse, K. Clement, B. Guy-Grand, and P. Froguel, “A frameshift mutation in human MC4R is associated with a dominant form of obesity,” Nature Genetics, vol. 20, no. 2, pp. 113–114, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. E. H. Young, N. J. Wareham, S. Farooqi et al., “The V103I polymorphism of the MC4R gene and obesity: population based studies and meta-analysis of 29 563 individuals,” International Journal of Obesity, vol. 31, no. 9, pp. 1437–1441, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. R. J. Loos, C. M. Lindgren, S. Li et al., “Common variants near MC4R are associated with fat mass, weight and risk of obesity,” Nature Genetics, vol. 40, no. 6, pp. 768–775, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. J. C. Chambers, P. Elliott, D. Zabaneh et al., “Common genetic variation near MC4R is associated with waist circumference and insulin resistance,” Nature Genetics, vol. 40, no. 6, pp. 716–718, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. M. W. Schwartz, S. C. Woods, D. Porte Jr., R. J. Seeley, and D. G. Baskin, “Central nervous system control of food intake,” Nature, vol. 404, no. 6778, pp. 661–671, 2000. View at Google Scholar · View at Scopus
  10. O. Tschritter, H. Preissl, A. M. Hennige et al., “The cerebrocortical response to hyperinsulinemia is reduced in overweight humans: a magnetoencephalographic study,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 32, pp. 12103–12108, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Stefan, F. Machicao, H. Staiger et al., “Polymorphisms in the gene encoding adiponectin receptor 1 are associated with insulin resistance and high liver fat,” Diabetologia, vol. 48, no. 11, pp. 2282–2291, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. O. Tschritter, H. Preissl, Y. Yokoyama, F. Machicao, H. U. Haring, and A. Fritsche, “Variation in the FTO gene locus is associated with cerebrocortical insulin resistance in humans,” Diabetologia, vol. 50, no. 12, pp. 2602–2603, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. O. Tschritter, A. M. Hennige, H. Preissl et al., “Insulin effects on beta and theta activity in the human brain are differentially affected by ageing,” Diabetologia, vol. 52, no. 1, pp. 169–171, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. C. D. Tesche and J. Karhu, “Theta oscillations index human hippocampal activation during a working memory task,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 2, pp. 919–924, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. L. E. Stoeckel, R. E. Weller, E. W. Cook III, D. B. Twieg, R. C. Knowlton, and J. E. Cox, “Widespread reward-system activation in obese women in response to pictures of high-calorie foods,” Neuroimage, vol. 41, no. 2, pp. 636–647, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Dzoljic, R. van Leeuwen, R. de Vries, and M. R. Dzoljic, “Vigilance and EEG power in rats: effects of potent inhibitors of the neuronal nitric oxide synthase,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 356, no. 1, pp. 56–61, 1997. View at Publisher · View at Google Scholar · View at Scopus