Table of Contents Author Guidelines Submit a Manuscript
Journal of Obesity
Volume 2011, Article ID 516576, 10 pages
http://dx.doi.org/10.1155/2011/516576
Research Article

Impact of Weight Loss on Physical Function with Changes in Strength, Muscle Mass, and Muscle Fat Infiltration in Overweight to Moderately Obese Older Adults: A Randomized Clinical Trial

1Department of Epidemiology, Graduate School of Public Health, Center for Aging and Population Health, University of Pittsburgh, 130 N. Bellefield Avenue, Pittsburgh, PA 15260, USA
2Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, A530 Crabtree Hall, 130 DeSoto Street, Pittsburgh, PA 15261, USA
3Department of Medicine, School of Medicine, University of Pittsburgh, N807 Montefiore, Pittsburgh, PA 15213, USA

Received 2 May 2010; Accepted 3 September 2010

Academic Editor: Robert J. Ross

Copyright © 2011 Adam J. Santanasto et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. T. Villareal, C. M. Apovian, R. F. Kushner, and S. Klein, “Obesity in older adults: technical review and position statement of the American Society for Nutrition and NAASO, The Obesity Society,” American Journal of Clinical Nutrition, vol. 82, no. 5, pp. 923–934, 2005. View at Google Scholar · View at Scopus
  2. R. Sturm, J. S. Ringel, and T. Andreyeva, “Increasing obesity rates and disability trends,” Health Affairs, vol. 23, no. 2, pp. 199–205, 2004. View at Google Scholar · View at Scopus
  3. A. B. Newman, V. Kupelian, M. Visser et al., “Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort,” Journals of Gerontology Series A: Biological Sciences and Medical Sciences, vol. 61, no. 1, pp. 72–77, 2006. View at Google Scholar · View at Scopus
  4. M. Visser, B. H. Goodpaster, S. B. Kritchevsky et al., “Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons,” Journals of Gerontology Series A: Biological Sciences and Medical Sciences, vol. 60, no. 3, pp. 324–333, 2005. View at Google Scholar · View at Scopus
  5. S. V. Brooks and J. A. Faulkner, “Skeletal muscle weakness in old age: underlying mechanisms,” Medicine and Science in Sports and Exercise, vol. 26, no. 4, pp. 432–439, 1994. View at Google Scholar · View at Scopus
  6. W. R. Frontera, V. A. Hughes, K. J. Lutz, and W. J. Evans, “A cross-sectional study of muscle strength and mass in 45- to 78-yr-old men and women,” Journal of Applied Physiology, vol. 71, no. 2, pp. 644–650, 1991. View at Google Scholar · View at Scopus
  7. B. H. Goodpaster, S. W. Park, T. B. Harris et al., “The loss of skeletal muscle strength, mass, and quality in older adults: the Health, Aging and Body Composition Study,” Journals of Gerontology Series A: Biological Sciences and Medical Sciences, vol. 61, no. 10, pp. 1059–1064, 2006. View at Google Scholar · View at Scopus
  8. B. H. Goodpaster, D. E. Kelley, F. L. Thaete, J. He, and R. Ross, “Skeletal muscle attenuation determined by computed tomography is associated with skeletal muscle lipid content,” Journal of Applied Physiology, vol. 89, no. 1, pp. 104–110, 2000. View at Google Scholar · View at Scopus
  9. B. H. Goodpaster, C. L. Carlson, M. Visser et al., “Attenuation of skeletal muscle and strength in the elderly: the health ABC study,” Journal of Applied Physiology, vol. 90, no. 6, pp. 2157–2165, 2001. View at Google Scholar · View at Scopus
  10. B. H. Goodpaster, P. Chomentowski, B. K. Ward et al., “Effects of physical activity on strength and skeletal muscle fat infiltration in older adults: a randomized controlled trial,” Journal of Applied Physiology, vol. 105, no. 5, pp. 1498–1503, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. R. N. Baumgartner, S. J. Wayne, D. L. Waters, I. Janssen, D. Gallagher, and J. E. Morley, “Sarcopenic obesity predicts instrumental activities of daily living disability in the elderly,” Obesity Research, vol. 12, no. 12, pp. 1995–2004, 2004. View at Google Scholar · View at Scopus
  12. E. Zoico, V. Di Francesco, J. M. Guralnik et al., “Physical disability and muscular strength in relation to obesity and different body composition indexes in a sample of healthy elderly women,” International Journal of Obesity, vol. 28, no. 2, pp. 234–241, 2004. View at Google Scholar
  13. A. B. Newman, J. S. Lee, M. Visser et al., “Weight change and the conservation of lean mass in old age: the Health, Aging and Body Composition Study,” American Journal of Clinical Nutrition, vol. 82, no. 4, pp. 872–878, 2005. View at Google Scholar · View at Scopus
  14. P. Chomentowski, J. J. Dubé, F. Amati et al., “Moderate exercise attenuates the loss of skeletal muscle mass that occurs with intentional caloric restriction-induced weight loss in older, overweight to obese adults,” Journals of Gerontology Series: A Biological Sciences and Medical Sciences, vol. 64, no. 5, pp. 575–580, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. X. Wang, G. D. Miller, S. P. Messier, and B. J. Nicklas, “Knee strength maintained despite loss of lean body mass during weight loss in older obese adults with knee osteoarthritis,” Journals of Gerontology Series A: Biological Sciences and Medical Sciences, vol. 62, no. 8, pp. 866–871, 2007. View at Google Scholar · View at Scopus
  16. D. T. Villareal, M. Banks, D. R. Sinacore, C. Siener, and S. Klein, “Effect of weight loss and exercise on frailty in obese older adults,” Archives of Internal Medicine, vol. 166, no. 8, pp. 860–866, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. W. J. Rejeski, R. A. Fielding, S. N. Blair et al., “The lifestyle interventions and independence for elders (LIFE) pilot study: design and methods,” Contemporary Clinical Trials, vol. 26, no. 2, pp. 141–154, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. G. A. Bray, K. S. Polonsky, P. G. Watson et al., “The Diabetes Prevention Program: design and methods for a clinical trial in the prevention of type 2 diabetes,” Diabetes Care, vol. 22, no. 4, pp. 623–634, 1999. View at Google Scholar · View at Scopus
  19. A. B. Newman, C. M. Bayles, C. N. Milas et al., “The 10 keys to healthy aging: findings from an innovative prevention program in the community,” Journal of Aging and Health, vol. 22, no. 5, pp. 547–566, 2010. View at Publisher · View at Google Scholar
  20. J. M. Guralnik, E. M. Simonsick, L. Ferrucci et al., “A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission,” Journals of Gerontology, vol. 49, no. 2, pp. M85–M94, 1994. View at Google Scholar · View at Scopus
  21. A. L. Stewart, K. M. Mills, A. C. King, W. L. Haskell, D. Gillis, and P. L. Ritter, “CHAMPS physical activity questionnaire for older adults: outcomes for interventions,” Medicine and Science in Sports and Exercise, vol. 33, no. 7, pp. 1126–1141, 2001. View at Google Scholar · View at Scopus
  22. R. A. Fielding, J. Katula, M. E. Miller et al., “Activity adherence and physical function in older adults with functional limitations,” Medicine and Science in Sports and Exercise, vol. 39, no. 11, pp. 1997–2004, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Visser, T. Fuerst, T. Lang, L. Salamone, T. B. Harris, and F.T. Health, A. Absorptiometry, Body Composition Study Dual-Energy X-Ray, and B.C.W. Group, “Validity of fan-beam dual-energy X-ray absorptiometry for measuring fat- free mass and leg muscle mass,” Journal of Applied Physiology, vol. 87, no. 4, pp. 1513–1520, 1999. View at Google Scholar
  24. D. Gallagher, M. Visser, R. E. De Meersman et al., “Appendicular skeletal muscle mass: effects of age, gender, and ethnicity,” Journal of Applied Physiology, vol. 83, no. 1, pp. 229–239, 1997. View at Google Scholar · View at Scopus
  25. S. Sipilä, J. Multanen, M. Kallinen, P. Era, and H. Suominen, “Effects of strength and endurance training on isometric muscle strength and walking speed in elderly women,” Acta Physiologica Scandinavica, vol. 156, no. 4, pp. 457–464, 1996. View at Google Scholar · View at Scopus
  26. B. H. Goodpaster, F. L. Thaete, and D. E. Kelley, “Composition of skeletal muscle evaluated with computed tomography,” Annals of the New York Academy of Sciences, vol. 904, pp. 18–24, 2000. View at Google Scholar · View at Scopus
  27. WHO, “Global Database on Body Mass Index,” October 2010, http://apps.who.int/bmi/index.jsp?introPage=intro_3.html.
  28. E. P. Weiss, S. B. Racette, D. T. Villareal et al., “Lower extremity muscle size and strength and aerobic capacity decrease with caloric restriction but not with exercise-induced weight loss,” Journal of Applied Physiology, vol. 102, no. 2, pp. 634–640, 2007. View at Publisher · View at Google Scholar
  29. D. Paddon-Jones and B. B. Rasmussen, “Dietary protein recommendations and the prevention of sarcopenia,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 12, no. 1, pp. 86–90, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Christensen, E. M. Bartels, A. Astrup, and H. Bliddal, “Effect of weight reduction in obese patients diagnosed with knee osteoarthritis: a systematic review and meta-analysis,” Annals of the Rheumatic Diseases, vol. 66, no. 4, pp. 433–439, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. S. P. Messier, R. F. Loeser, G. D. Miller et al., “Exercise and dietary weight loss in overweight and obese older adults with knee osteoarthritis: the arthritis, diet, and activity promotion trial,” Arthritis and Rheumatism, vol. 50, no. 5, pp. 1501–1510, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. G. D. Miller, B. J. Nicklas, C. Davis, R. F. Loeser, L. Lenchik, and S. P. Messier, “Intensive weight loss program improves physical function in older obese adults with knee osteoarthritis,” Obesity, vol. 14, no. 7, pp. 1219–1230, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. K. N. Manolopoulos, F. Karpe, and K. N. Frayn, “Gluteofemoral body fat as a determinant of metabolic health,” International Journal of Obesity, vol. 34, no. 6, pp. 949–959, 2010. View at Publisher · View at Google Scholar
  34. J. C. Seidell, L. Pérusse, J.-P. Després, and C. Bouchard, “Waist and hip circumferences have independent and opposite effects on cardiovascular disease risk factors: the Quebec Family Study,” American Journal of Clinical Nutrition, vol. 74, no. 3, pp. 315–321, 2001. View at Google Scholar · View at Scopus
  35. M. B. Snijder, M. Visser, J. M. Dekker et al., “Low subcutaneous thigh fat is a risk factor for unfavourable glucose and lipid levels, independently of high abdominal fat. The Health ABC Study,” Diabetologia, vol. 48, no. 2, pp. 301–308, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. I. Ferreira, M. B. Snijder, J. W. R. Twisk et al., “Central fat mass versus peripheral fat and lean mass: opposite (adverse versus favorable) associations with arterial stiffness? The Amsterdam growth and health longitudinal study,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 6, pp. 2632–2639, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. M. B. Snijder, R. M. A. Henry, M. Visser et al., “Regional body composition as a determinant of arterial stiffness in the elderly: the Hoorn Study,” Journal of Hypertension, vol. 22, no. 12, pp. 2339–2347, 2004. View at Publisher · View at Google Scholar · View at Scopus