Table of Contents Author Guidelines Submit a Manuscript
Journal of Obesity
Volume 2011, Article ID 528401, 10 pages
http://dx.doi.org/10.1155/2011/528401
Review Article

The Gut Hormones in Appetite Regulation

Section of Investigative Medicine, Imperial College London, London W12 0NN, UK

Received 3 February 2011; Accepted 25 July 2011

Academic Editor: G. Silecchia

Copyright © 2011 Keisuke Suzuki et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. E. Field, E. H. Coakley, A. Must et al., “Impact of overweight on the risk of developing common chronic diseases during a 10-year period,” Archives of Internal Medicine, vol. 161, no. 13, pp. 1581–1586, 2001. View at Google Scholar · View at Scopus
  2. A. Must, J. Spadano, E. H. Coakley, A. E. Field, G. Colditz, and W. H. Dietz, “The disease burden associated with overweight and obesity,” Journal of the American Medical Association, vol. 282, no. 16, pp. 1523–1529, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Matsuzawa, T. Nakamura, M. Takahashi et al., “New criteria for 'obesity disease' in Japan,” Circulation Journal, vol. 66, no. 11, pp. 987–992, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Matsushita, Y. Takahashi, T. Mizoue, M. Inoue, M. Noda, and S. Tsugane, “Overweight and obesity trends among Japanese adults: a 10-year follow-up of the JPHC Study,” International Journal of Obesity, vol. 32, no. 12, pp. 1861–1867, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. E. F. Bailey, “A tasty morsel: the role of the dorsal vagal complex in the regulation of food intake and swallowing. Focus on “BDNF/TrkB signaling interacts with GABAergic system to inhibit rhythmic swallowing in the rat,” by Bariohay et al,” American Journal of Physiology, vol. 295, no. 4, pp. R1048–R1049, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. J. F. Rehfeld, “The new biology of gastrointestinal hormones,” Physiological Reviews, vol. 78, no. 4, pp. 1087–1108, 1998. View at Google Scholar · View at Scopus
  7. R. J. Phillips and T. L. Powley, “Gastric volume rather than nutrient content inhibits food intake,” American Journal of Physiology, vol. 271, no. 3, pp. R766–R779, 1996. View at Google Scholar · View at Scopus
  8. C. K. Martin, D. E. Bellanger, K. K. Rau, S. Coulon, and F. L. Greenway, “Safety of the Ullorex oral intragastric balloon for the treatment of obesity,” Journal of Diabetes Science and Technology, vol. 1, no. 40, pp. 574–581, 2007. View at Google Scholar
  9. D. Rigaud, N. Trostler, R. Rozen, T. Vallot, and T. Apfelbaum, “Gastric distension, hunger and energy intake after balloon implantation in severe obesity,” International Journal of Obesity, vol. 19, no. 7, pp. 489–495, 1995. View at Google Scholar
  10. G. J. Schwartz, “The role of gastrointestinal vagal afferents in the control of food intake: current prospects,” Nutrition, vol. 16, no. 10, pp. 866–873, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. G. J. Schwartz, C. F. Salorio, C. Skoglund, and T. H. Moran, “Gut vagal afferent lesions increase meal size but do not block gastric preload-induced feeding suppression,” American Journal of Physiology, vol. 276, no. 6, pp. R1623–R1629, 1999. View at Google Scholar · View at Scopus
  12. R. C. Spiller, I. F. Trotman, and B. E. Higgins, “The ileal brake—inhibition of jejunal motility after ileal fat perfusion in man,” Gut, vol. 25, no. 4, pp. 365–374, 1984. View at Google Scholar · View at Scopus
  13. J. Wen, S. F. Phillips, M. G. Sarr, L. J. Kost, and J. J. Holst, “PYY and GLP-1 contribute to feedback inhibition from the canine ileum and colon,” American Journal of Physiology, vol. 269, no. 6, pp. G945–G952, 1995. View at Google Scholar · View at Scopus
  14. S. Z. Yanovski and J. A. Yanovski, “Obesity,” New England Journal of Medicine, vol. 346, no. 8, pp. 591–602, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. R. E. Brolin, “Bariatric surgery and long-term control of morbid obesity,” Journal of the American Medical Association, vol. 288, no. 22, pp. 2793–2796, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. D. E. Cummings, J. Overduin, and K. E. Foster-Schubert, “Gastric bypass for obesity: mechanisms of weight loss and diabetes resolution,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 6, pp. 2608–2615, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. J. A. Tadross and C. W. Le Roux, “The mechanisms of weight loss after bariatric surgery,” International Journal of Obesity, vol. 33, no. 1, pp. S28–S32, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. F. Favretti, D. Ashton, L. Busetto, G. Segato, and M. De Luca, “The gastric band: first-choice procedure for obesity surgery,” World Journal of Surgery, vol. 33, no. 10, pp. 2039–2048, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. D. E. Cummings, D. S. Weigle, R. Scott Frayo et al., “Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery,” New England Journal of Medicine, vol. 346, no. 21, pp. 1623–1630, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. J. Korner, W. Inabnet, G. Febres et al., “Prospective study of gut hormone and metabolic changes after adjustable gastric banding and Roux-en-Y gastric bypass,” International Journal of Obesity, vol. 33, no. 7, pp. 786–795, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. C. W. Le Roux, R. Welbourn, M. Werling et al., “Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass,” Annals of Surgery, vol. 246, no. 5, pp. 780–785, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. M. Bueter, C. Löwenstein, T. Olbers et al., “Gastric bypass increases energy expenditure in rats,” Gastroenterology, vol. 138, no. 5, pp. 1845–1853.e1, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. M. Laville and E. Disse, “Bariatric surgery for diabetes treatment: why should we go rapidly to surgery,” Diabetes and Metabolism, vol. 35, no. 6, pp. 562–563, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Musso, R. Gambino, and M. Cassader, “Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded?” Diabetes Care, vol. 33, no. 10, pp. 2277–2284, 2010. View at Publisher · View at Google Scholar · View at PubMed
  25. F. Bäckhed, H. Ding, T. Wang et al., “The gut microbiota as an environmental factor that regulates fat storage,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 44, pp. 15718–15723, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. F. Bäckhed, J. K. Manchester, C. F. Semenkovich, and J. I. Gordon, “Mechanisms underlying the resistance to diet-induced obesity in germ-free mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 3, pp. 979–984, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. P. D. Cani, E. Lecourt, E. M. Dewulf et al., “Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal,” American Journal of Clinical Nutrition, vol. 90, no. 5, pp. 1236–1243, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. K. Tatemoto and V. Mutt, “Isolation of two novel candidate hormones using a chemical method for finding naturally occurring polypeptides,” Nature, vol. 285, no. 5764, pp. 417–418, 1980. View at Google Scholar · View at Scopus
  29. S. Lin, D. Boey, and H. Herzog, “NPY and Y receptors: lessons from transgenic and knockout models,” Neuropeptides, vol. 38, no. 4, pp. 189–200, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. G. A. Eberlein, V. E. Eysselein, M. Schaeffer et al., “A new molecular form of PYY: structural characterization of human PYY(3-36) and PYY(1-36),” Peptides, vol. 10, no. 4, pp. 797–803, 1989. View at Google Scholar · View at Scopus
  31. T. E. Adrian, G. L. Ferri, and A. J. Bacarese-Hamilton, “Human distribution and release of a putative new gut hormone, peptide YY,” Gastroenterology, vol. 89, no. 5, pp. 1070–1077, 1985. View at Google Scholar · View at Scopus
  32. R. L. Batterham, M. A. Cowley, C. J. Small et al., “Gut hormone PYY3-36 physiologically inhibits food intake,” Nature, vol. 418, no. 6898, pp. 650–654, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. R. L. Batterham, M. A. Cohen, S. M. Ellis et al., “Inhibition of food intake in obese subjects by peptide YY3-36,” New England Journal of Medicine, vol. 349, no. 10, pp. 941–948, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. T. E. Adrian, A. P. Savage, and A. J. Bacarese-Hamilton, “Peptide YY abnormalities in gastrointestinal diseases,” Gastroenterology, vol. 90, no. 2, pp. 379–384, 1986. View at Google Scholar · View at Scopus
  35. P. J. Wahab, W. P. M. Hopman, and J. B. M. J. Jansen, “Basal and fat-stimulated plasma peptide YY levels in celiac disease,” Digestive Diseases and Sciences, vol. 46, no. 11, pp. 2504–2509, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. B. Sloth, J. J. Holst, A. Flint, N. T. Gregersen, and A. Astrup, “Effects of PYY1-36 and PYY3-36 on appetite, energy intake, energy expenditure, glucose and fat metabolism in obese and lean subjects,” American Journal of Physiology, vol. 292, no. 4, pp. E1062–E1068, 2007. View at Publisher · View at Google Scholar · View at PubMed
  37. D. Boey, S. Lin, R. F. Enriquez et al., “PYY transgenic mice are protected against diet-induced and genetic obesity,” Neuropeptides, vol. 42, no. 1, pp. 19–30, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. T. Talsania, Y. Anini, S. Siu, D. J. Drucker, and P. L. Brubaker, “Peripheral exendin-4 and peptide YY3-36 synergistically reduce food intake through different mechanisms in mice,” Endocrinology, vol. 146, no. 9, pp. 3748–3756, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. D. Ashby and S. R. Bloom, “Recent progress in PYY research—an update report for 8th NPY meeting,” Peptides, vol. 28, no. 2, pp. 198–202, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. M. A. Bartolomé, M. Borque, J. Martinez-Sarmiento et al., “Peptide YY secretion in morbidly obese patients before and after vertical banded gastroplasty,” Obesity Surgery, vol. 12, no. 3, pp. 324–327, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Misra, K. K. Miller, P. Tsai et al., “Elevated peptide YY levels in adolescent girls with anorexia nervosa,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 3, pp. 1027–1033, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. B. J. Kim, O. D. Carlson, H. J. Jang, D. Elahi, C. Berry, and J. M. Egan, “Peptide YY is secreted after oral glucose administration in a gender-specific manner,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 12, pp. 6665–6671, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. P. T. Pfluger, J. Kampe, T. R. Castaneda et al., “Effect of human body weight changes on circulating levels of peptide YY and peptide YY3-36,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 2, pp. 583–588, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. I. G. Halatchev and R. D. Cone, “Peripheral administration of PYY3-36 produces conditioned taste aversion in mice,” Cell Metabolism, vol. 1, no. 3, pp. 159–168, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. C. R. Abbott, M. Monteiro, C. J. Small et al., “The inhibitory effects of peripheral administration of peptide YY 3-36 and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway,” Brain Research, vol. 1044, no. 1, pp. 127–131, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. S. Koda, Y. Date, N. Murakami et al., “The role of the vagal nerve in peripheral PYY3-36-induced feeding reduction in rats,” Endocrinology, vol. 146, no. 5, pp. 2369–2375, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. J. E. Morley, A. S. Levine, M. Grace, and J. Kneip, “Peptide YY (PYY), a potent orexigenic agent,” Brain Research, vol. 341, no. 1, pp. 200–203, 1985. View at Publisher · View at Google Scholar · View at Scopus
  48. B. G. Stanley, D. R. Daniel, A. S. Chin, and S. F. Leibowitz, “Paraventricular nucleus injections of peptide YY and neuropeptide Y preferentially enhance carbohydrate ingestion,” Peptides, vol. 6, no. 6, pp. 1205–1211, 1985. View at Google Scholar · View at Scopus
  49. A. Kanatani, S. Mashiko, N. Murai et al., “Role of the Y1 receptor in the regulation of neuropeptide Y-mediated feeding: comparison of wild-type, Y1 receptor-deficient, and Y5 receptor-deficient mice,” Endocrinology, vol. 141, no. 3, pp. 1011–1016, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. R. L. Batterham, D. H. Ffytche, J. M. Rosenthal et al., “PYY modulation of cortical and hypothalamic brain areas predicts feeding behaviour in humans,” Nature, vol. 450, no. 7166, pp. 106–109, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. A. Asakawa, A. Inui, H. Yuzuriha et al., “Characterization of the effects of pancreatic polypeptide in the regulation of energy balance,” Gastroenterology, vol. 124, no. 5, pp. 1325–1336, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. R. M. C. Parker and H. Herzog, “Regional distribution of Y-receptor subtype mRNAs in rat brain,” European Journal of Neuroscience, vol. 11, no. 4, pp. 1431–1448, 1999. View at Publisher · View at Google Scholar · View at Scopus
  53. D. C. Whitcomb, I. L. Taylor, and S. R. Vigna, “Characterization of saturable binding sites for circulating pancreatic polypeptide in rat brain,” American Journal of Physiology, vol. 259, no. 4, pp. G687–G691, 1990. View at Google Scholar · View at Scopus
  54. J. T. Clark, P. S. Kalra, W. R. Crowley, and S. P. Kalra, “Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats,” Endocrinology, vol. 115, no. 1, pp. 427–429, 1984. View at Google Scholar · View at Scopus
  55. R. Jorde and P. G. Burhol, “Fasting and postprandial plasma pancreatic polypeptide (PP) levels in obesity,” International Journal of Obesity, vol. 8, no. 5, pp. 393–397, 1984. View at Google Scholar · View at Scopus
  56. O. Wisen, H. Bjorvell, P. Cantor, C. Johansson, and E. Theodorsson, “Plasma concentrations of regulatory peptides in obesity following modified sham feeding (MSF) and a liquid test meal,” Regulatory Peptides, vol. 39, no. 1, pp. 43–54, 1992. View at Publisher · View at Google Scholar · View at Scopus
  57. B. Glaser, G. Zoghlin, K. Pienta, and A. I. Vinik, “Pancreatic polypeptide response to secretin in obesity: effects of glucose intolerance,” Hormone and Metabolic Research, vol. 20, no. 5, pp. 288–292, 1988. View at Google Scholar · View at Scopus
  58. V. Lassmann, P. Vague, B. Vialettes, and M. C. Simon, “Low plasma levels of pancreatic polypeptide in obesity,” Diabetes, vol. 29, no. 6, pp. 428–430, 1980. View at Google Scholar · View at Scopus
  59. A. M. Uhe, G. I. Szmukler, G. R. Collier, J. Hansky, K. O'Dea, and G. P. Young, “Potential regulators of feeding behavior in anorexia nervosa,” American Journal of Clinical Nutrition, vol. 55, no. 1, pp. 28–32, 1992. View at Google Scholar · View at Scopus
  60. W. B. Zipf, T. M. O'Dorisio, S. Cataland, and K. Dixon, “Pancreatic polypeptide responses to protein meal challenges in obese but otherwise normal children and obese children with Prader-Willi syndrome,” Journal of Clinical Endocrinology and Metabolism, vol. 57, no. 5, pp. 1074–1080, 1983. View at Google Scholar · View at Scopus
  61. N. Ueno, A. Inui, M. Iwamoto et al., “Decreased food intake and body weight in pancreatic polypeptide-overexpressing mice,” Gastroenterology, vol. 117, no. 6, pp. 1427–1432, 1999. View at Google Scholar · View at Scopus
  62. R. L. Batterham, C. W. Le Roux, M. A. Cohen et al., “Pancreatic polypeptide reduces appetite and food intake in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 8, pp. 3989–3992, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. G. G. Berntson, W. B. Zipf, T. M. O'Dorisio, J. A. Hoffman, and R. E. Chance, “Pancreatic polypeptide infusions reduce food intake in Prader-Willi syndrome,” Peptides, vol. 14, no. 3, pp. 497–503, 1993. View at Publisher · View at Google Scholar · View at Scopus
  64. J. J. Holst, “On the physiology of GIP and GLP-1,” Hormone and Metabolic Research, vol. 36, no. 11-12, pp. 747–754, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. M. Tang-Christensen, N. Vrang, and P. J. Larsen, “Glucagon-like peptide containing pathways in the regulation of feeding behaviour,” International Journal of Obesity, vol. 25, supplement 5, pp. S42–S47, 2001. View at Publisher · View at Google Scholar
  66. J. D. Tucker, S. Dhanvantari, and P. L. Brubaker, “Proglucagon processing in islet and intestinal cell lines,” Regulatory Peptides, vol. 62, no. 1, pp. 29–35, 1996. View at Publisher · View at Google Scholar · View at Scopus
  67. C. F. Deacon, “Circulation and degradation of GIP and GLP-1,” Hormone and Metabolic Research, vol. 36, no. 11-12, pp. 761–765, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. R. Mentlein, B. Gallwitz, and W. E. Schmidt, “Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7-36)amide, peptide histidine methionine and is responsible for their degradation in human serum,” European Journal of Biochemistry, vol. 214, no. 3, pp. 829–835, 1993. View at Google Scholar · View at Scopus
  69. T. Vilsbøll, H. Agersø, T. Krarup, and J. J. Holst, “Similar elimination rates of glucagon-like peptide-1 in obese type 2 diabetic patients and healthy subjects,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 1, pp. 220–224, 2003. View at Publisher · View at Google Scholar
  70. C. Orskov, L. Rabenhoj, A. Wettergren, H. Kofod, and J. J. Holst, “Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide I in humans,” Diabetes, vol. 43, no. 4, pp. 535–539, 1994. View at Google Scholar · View at Scopus
  71. J. J. Holst, “The physiology of glucagon-like peptide 1,” Physiological Reviews, vol. 87, no. 4, pp. 1409–1439, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. E. Yamato, H. Ikegami, K. Takekawa et al., “Tissue-specific and glucose-dependent expression of receptor genes for glucagon and glucagon-like peptide-1 (GLP-1),” Hormone and Metabolic Research, vol. 29, no. 2, pp. 56–59, 1997. View at Google Scholar · View at Scopus
  73. T. P. Vahl, D. L. Drazen, R. J. Seeley, D. A. D'Alessio, and S. C. Woods, “Meal-anticipatory glucagon-like peptide-1 secretion in rats,” Endocrinology, vol. 151, no. 2, pp. 569–575, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. D. E. Cummings and J. Overduin, “Gastrointestinal regulation of food intake,” Journal of Clinical Investigation, vol. 117, no. 1, pp. 13–23, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. C. Verdich, A. Flint, J. P. Gutzwiller et al., “A meta-analysis of the effect of glucagon-like peptide-1 (7-36) amide on Ad Libitum energy intake in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 9, pp. 4382–4389, 2001. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Zander, S. Madsbad, J. L. Madsen, and J. J. Holst, “Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and β-cell function in type 2 diabetes: a parallel-group study,” Lancet, vol. 359, no. 9309, pp. 824–830, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. J. Eng, W. A. Kleinman, L. Singh, G. Singh, and J. P. Raufman, “Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas,” Journal of Biological Chemistry, vol. 267, no. 11, pp. 7402–7405, 1992. View at Google Scholar · View at Scopus
  78. R. A. DeFronzo, R. E. Ratner, J. Han, D. D. Kim, M. S. Fineman, and A. D. Baron, “Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2,” Diabetes Care, vol. 28, no. 5, pp. 1092–1100, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. D. J. Drucker, J. B. Buse, K. Taylor et al., “Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomised, open-label, non-inferiority study,” The Lancet, vol. 372, no. 9645, pp. 1240–1250, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. J. B. Buse, J. Rosenstock, G. Sesti et al., “Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6),” The Lancet, vol. 374, no. 9683, pp. 39–47, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. J. M. Egan, A. Bulotta, H. Hui, and R. Perfetti, “GLP-1 receptor agonists are growth and differentiation factors for pancreatic islet beta cells,” Diabetes/Metabolism Research and Reviews, vol. 19, no. 2, pp. 115–123, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. A. Harkavyi and P. S. Whitton, “Glucagon-like peptide 1 receptor stimulation as a means of neuroprotection,” British Journal of Pharmacology, vol. 159, no. 3, pp. 495–501, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. A. Harkavyi, A. Abuirmeileh, R. Lever, A. E. Kingsbury, C. S. Biggs, and P. S. Whitton, “Glucagon-like peptide 1 receptor stimulation reverses key deficits in distinct rodent models of Parkinson's disease,” Journal of Neuroinflammation, vol. 5, article no. 19, 2008. View at Publisher · View at Google Scholar · View at PubMed
  84. S. Kim, M. Moon, and S. Park, “Exendin-4 protects dopaminergic neurons by inhibition of microglial activation and matrix metalloproteinase-3 expression in an animal model of Parkinson's disease,” Journal of Endocrinology, vol. 202, no. 3, pp. 431–439, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  85. Y. Li, T. Perry, M. S. Kindy et al., “GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 4, pp. 1285–1290, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  86. T. Perry, D. K. Lahiri, K. Sambamurti et al., “Glucagon-like peptide-1 decreases endogenous amyloid-β peptide (Aβ) levels and protects hippocampal neurons from death induced by Aβ and iron,” Journal of Neuroscience Research, vol. 72, no. 5, pp. 603–612, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. T. A. Perry and N. H. Greig, “A new Alzheimer's disease interventive strategy: GLP-1,” Current Drug Targets, vol. 5, no. 6, pp. 565–571, 2004. View at Publisher · View at Google Scholar · View at Scopus
  88. T. Perry, H. W. Holloway, A. Weerasuriya et al., “Evidence of GLP-1-mediated neuroprotection in an animal model of pyridoxine-induced peripheral sensory neuropathy,” Experimental Neurology, vol. 203, no. 2, pp. 293–301, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. D. J. Drucker, “Glucagon-like peptide 2,” Trends in Endocrinology and Metabolism, vol. 10, no. 4, pp. 153–156, 1999. View at Publisher · View at Google Scholar · View at Scopus
  90. P. T. Schmidt, E. Näslund, P. Grybäck et al., “Peripheral administration of GLP-2 to humans has no effect on gastric emptying or satiety,” Regulatory Peptides, vol. 116, no. 1–3, pp. 21–25, 2003. View at Publisher · View at Google Scholar
  91. D. J. Drucker, P. Ehrlich, S. L. Asa, and P. L. Brubaker, “Induction of intestinal epithelial proliferation by glucagon-like peptide 2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 15, pp. 7911–7916, 1996. View at Publisher · View at Google Scholar · View at Scopus
  92. K. Wallis, J. R. F. Walters, and A. Forbes, “Review article: glucagon-like peptide 2—current applications and future directions,” Alimentary Pharmacology and Therapeutics, vol. 25, no. 4, pp. 365–372, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  93. A. L. Buchman, S. Katz, J. C. Fang, C. N. Bernstein, and S. G. Abou-Assi, “Teduglutide, a novel mucosally active analog of glucagon-like peptide-2 (GLP-2) for the treatment of moderate to severe Crohn's disease,” Inflammatory Bowel Diseases, vol. 16, no. 6, pp. 962–973, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  94. C. F. Nagell, A. Wettergren, J. F. Pedersen, D. Mortensen, and J. J. Holst, “Glucagon-like peptide-2 inhibits antral emptying in man, but is not as potent as glucagon-like peptide-1,” Scandinavian Journal of Gastroenterology, vol. 39, no. 4, pp. 353–358, 2004. View at Publisher · View at Google Scholar · View at Scopus
  95. M. A. Ghatei, L. O. Uttenthal, and N. D. Christofides, “Molecular forms of human enteroglucagon in tissue and plasma: plasma responses to nutrient stimuli in health and in disorders of the upper gastrointestinal tract,” Journal of Clinical Endocrinology and Metabolism, vol. 57, no. 3, pp. 488–495, 1983. View at Google Scholar
  96. M. A. Cohen, S. M. Ellis, C. W. Le Roux et al., “Oxyntomodulin suppresses appetite and reduces food intake in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 10, pp. 4696–4701, 2003. View at Publisher · View at Google Scholar · View at Scopus
  97. C. L. Dakin, I. Gunn, C. J. Small et al., “Oxyntomodulin inhibits food intake in the rat,” Endocrinology, vol. 142, no. 10, pp. 4244–4250, 2001. View at Publisher · View at Google Scholar · View at Scopus
  98. K. Wynne, A. J. Park, C. J. Small et al., “Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial,” International Journal of Obesity, vol. 30, no. 12, pp. 1729–1736, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  99. C. L. Dakin, C. J. Small, R. L. Batterham et al., “Peripheral oxyntomodulin reduces food intake and body weight gain in rats,” Endocrinology, vol. 145, no. 6, pp. 2687–2695, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  100. L. L. Baggio, Q. Huang, T. J. Brown, and D. J. Drucker, “Oxyntomodulin and glucagon-like peptide-1 differentially regulate murine food intake and energy expenditure,” Gastroenterology, vol. 127, no. 2, pp. 546–558, 2004. View at Publisher · View at Google Scholar · View at Scopus
  101. G. L. Sowden, D. J. Drucker, D. Weinshenker, and S. J. Swoap, “Oxyntomodulin increases intrinsic heart rate in mice independent of the glucagon-like peptide-1 receptor,” American Journal of Physiology, vol. 292, no. 2, pp. R962–R970, 2007. View at Publisher · View at Google Scholar · View at PubMed
  102. K. Ban, K. H. Kim, C. K. Cho et al., “Glucagon-Like Peptide (GLP)-1(9-36)amide-mediated cytoprotection is blocked by exendin(9-39) yet does not require the known GLP-1 receptor,” Endocrinology, vol. 151, no. 4, pp. 1520–1531, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  103. M. R. Druce, J. S. Minnion, B. C. T. Field et al., “Investigation of structure-activity relationships of oxyntomodulin (Oxm) using oxm analogs,” Endocrinology, vol. 150, no. 4, pp. 1712–1721, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  104. M. Kojima, H. Hosoda, Y. Date, M. Nakazato, H. Matsuo, and K. Kangawa, “Ghrelin is a growth-hormone-releasing acylated peptide from stomach,” Nature, vol. 402, no. 6762, pp. 656–660, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  105. D. E. Cummings, J. Q. Purnell, R. S. Frayo, K. Schmidova, B. E. Wisse, and D. S. Weigle, “A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans,” Diabetes, vol. 50, no. 8, pp. 1714–1719, 2001. View at Google Scholar · View at Scopus
  106. M. Nakazato, N. Murakami, Y. Date et al., “A role for ghrelin in the central regulation of feeding,” Nature, vol. 409, no. 6817, pp. 194–198, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  107. M. Tschop, D. L. Smiley, and M. L. Heiman, “Ghrelin induces adiposity in rodents,” Nature, vol. 407, no. 6806, pp. 908–913, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  108. B. Otto, U. Cuntz, E. Fruehauf et al., “Weight gain decreases elevated plasma ghrelin concentrations of patients with anorexia nervosa,” European Journal of Endocrinology, vol. 145, no. 5, pp. 669–673, 2001. View at Google Scholar · View at Scopus
  109. C. W. Le Roux, M. Patterson, R. P. Vincent, C. Hunt, M. A. Ghatei, and S. R. Bloom, “Postprandial plasma ghrelin is suppressed proportional to meal calorie content in normal-weight but not obese subjects,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 2, pp. 1068–1071, 2005. View at Publisher · View at Google Scholar · View at PubMed
  110. N. Nagaya, M. Uematsu, M. Kojima et al., “Elevated circulating level of ghrelin in cachexia associated with chronic heart failure: relationships between ghrelin and anabolic/catabolic factors,” Circulation, vol. 104, no. 17, pp. 2034–2038, 2001. View at Google Scholar · View at Scopus
  111. D. E. Cummings, K. Clement, J. Q. Purnell et al., “Elevated plasma ghrelin levels in Prader-Willi syndrome,” Nature Medicine, vol. 8, no. 7, pp. 643–644, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  112. S. Taheri, L. Lin, D. Austin, T. Young, and E. Mignot, “Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index,” PLoS Medicine, vol. 1, article e62, 2004. View at Publisher · View at Google Scholar · View at PubMed
  113. L. Wang, D. H. Saint-Pierre, and Y. Taché, “Peripheral ghrelin selectively increases Fos expression in neuropeptide Y—synthesizing neurons in mouse hypothalamic arcuate nucleus,” Neuroscience Letters, vol. 325, no. 1, pp. 47–51, 2002. View at Publisher · View at Google Scholar · View at Scopus
  114. H. Y. Chen, M. E. Trumbauer, A. S. Chen et al., “Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y and agouti-related protein,” Endocrinology, vol. 145, no. 6, pp. 2607–2612, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  115. C. B. Lawrence, A. C. Snape, F. M. H. Baudoin, and S. M. Luckman, “Acute central ghrelin and GH secretagogues induce feeding and activate brain appetite centers,” Endocrinology, vol. 143, no. 1, pp. 155–162, 2002. View at Publisher · View at Google Scholar · View at Scopus
  116. Y. Date, N. Murakami, K. Toshinai et al., “The role of the gastric afferent vagal nerve in Ghrelin-induced feeding and growth hormone secretion in rats,” Gastroenterology, vol. 123, no. 4, pp. 1120–1128, 2002. View at Publisher · View at Google Scholar · View at Scopus
  117. S. Malik, F. McGlone, D. Bedrossian, and A. Dagher, “Ghrelin modulates brain activity in areas that control appetitive behavior,” Cell Metabolism, vol. 7, no. 5, pp. 400–409, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  118. J. Gibbs, R. C. Young, and G. P. Smith, “Cholecystokinin decreases food intake in rats,” Journal of Comparative and Physiological Psychology, vol. 84, no. 3, pp. 488–495, 1973. View at Google Scholar
  119. R. A. Liddle, I. D. Goldfine, and M. S. Rosen, “Cholecystokinin bioactivity in human plasma. Molecular forms, responses to feeding, and relationship to gallbladder contraction,” Journal of Clinical Investigation, vol. 75, no. 4, pp. 1144–1152, 1985. View at Google Scholar
  120. H. R. Kissileff, F. X. Pi-Sunyer, J. Thornton, and G. P. Smith, “C-terminal octapeptide of cholecystokinin decreases food intake in man,” American Journal of Clinical Nutrition, vol. 34, no. 2, pp. 154–160, 1981. View at Google Scholar · View at Scopus
  121. T. H. Moran, A. R. Baldessarini, C. F. Salorio, T. Lowery, and G. J. Schwartz, “Vagal afferent and efferent contributions to the inhibition of food intake by cholecystokinin,” American Journal of Physiology, vol. 272, no. 4, pp. R1245–R1251, 1997. View at Google Scholar · View at Scopus
  122. T. H. Moran, L. F. Katz, C. R. Plata-Salaman, and G. J. Schwartz, “Disordered food intake and obesity in rats lacking cholecystokinin A receptors,” American Journal of Physiology, vol. 274, no. 3, pp. R618–R625, 1998. View at Google Scholar · View at Scopus
  123. S. A. Wank, “Cholecystokinin receptors,” American Journal of Physiology, vol. 269, no. 5, pp. G628–G646, 1995. View at Google Scholar · View at Scopus
  124. D. B. West, D. Fey, and S. C. Woods, “Cholecystokinin persistently suppresses meal size but not food intake in free-feeding rats,” The American journal of physiology, vol. 246, no. 5, pp. R776–R787, 1984. View at Google Scholar · View at Scopus
  125. J. N. Crawley and M. C. Beinfeld, “Rapid development of tolerance to the behavioural actions of cholecystokinin,” Nature, vol. 302, no. 5910, pp. 703–706, 1983. View at Google Scholar · View at Scopus
  126. K. S. Polonsky, B. D. Given, and E. Van Cauter, “Twenty-four-hour profiles and pulsatile patterns of insulin secretion in normal and obese subjects,” Journal of Clinical Investigation, vol. 81, no. 2, pp. 442–448, 1988. View at Google Scholar · View at Scopus
  127. E. L. Air, S. C. Benoit, K. A. Blake Smith, D. J. Clegg, and S. C. Woods, “Acute third ventricular administration of insulin decreases food intake in two paradigms,” Pharmacology Biochemistry and Behavior, vol. 72, no. 1-2, pp. 423–429, 2002. View at Publisher · View at Google Scholar
  128. D. Porte Jr. and S. C. Woods, “Regulation of food intake and body weight by insulin,” Diabetologia, vol. 20, pp. 274–280, 1981. View at Google Scholar · View at Scopus
  129. R. V. Considine, M. K. Sinha, M. L. Heiman et al., “Serum immunoreactive-leptin concentrations in normal-weight and obese humans,” New England Journal of Medicine, vol. 334, no. 5, pp. 292–295, 1996. View at Publisher · View at Google Scholar · View at Scopus
  130. M. F. Saad, M. G. Riad-Gabriel, A. Khan et al., “Diurnal and ultradian rhythmicity of plasma leptin: effects of gender and adiposity,” Journal of Clinical Endocrinology and Metabolism, vol. 83, no. 2, pp. 453–459, 1998. View at Publisher · View at Google Scholar
  131. I. S. Farooqi, S. A. Jebb, G. Langmack et al., “Effects of recombinant leptin therapy in a child with congenital leptin deficiency,” New England Journal of Medicine, vol. 341, no. 12, pp. 879–884, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  132. P. M. J. Zelissen, K. Stenlof, M. E. J. Lean et al., “Effect of three treatment schedules of recombinant methionyl human leptin on body weight in obese adults: a randomized, placebo-controlled trial,” Diabetes, Obesity and Metabolism, vol. 7, no. 6, pp. 755–761, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus