Table of Contents Author Guidelines Submit a Manuscript
Journal of Obesity
Volume 2011, Article ID 959601, 8 pages
http://dx.doi.org/10.1155/2011/959601
Research Article

Gastric Bypass Promotes More Lipid Mobilization Than a Similar Weight Loss Induced by Low-Calorie Diet

1Department of Radiology, Uppsala University, 751 85 Uppsala, Sweden
2Department of Surgery, Uppsala University, 751 85 Uppsala, Sweden
3Department of Public Health and Caring Sciences, Uppsala University, 751 85 Uppsala, Sweden
4Philips Research Europe, D-22335 Hamburg, Germany
5Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden

Received 2 August 2010; Revised 1 October 2010; Accepted 13 October 2010

Academic Editor: Francesco Saverio Papadia

Copyright © 2011 Joel Kullberg et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. C. Zalesin, B. A. Franklin, M. A. Lillystone et al., “Differential loss of fat and lean mass in the morbidly obese after bariatric surgery,” Metabolic Syndrome and Related Disorders, vol. 8, no. 1, pp. 15–20, 2010. View at Publisher · View at Google Scholar
  2. C. M. Borg, C. W. Le Roux, M. A. Ghatei, S. R. Bloom, A. G. Patel, and S. J. B. Aylwin, “Progressive rise in gut hormone levels after Roux-en-Y gastric bypass suggests gut adaptation and explains altered satiety,” British Journal of Surgery, vol. 93, no. 2, pp. 210–215, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Holdstock, B. Zethelius, M. Sundbom, F. A. Karlsson, and B. Edén Engström, “Postprandial changes in gut regulatory peptides in gastric bypass patients,” International Journal of Obesity, vol. 32, no. 11, pp. 1640–1646, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. H. E. Bays, B. Laferrère, J. Dixon et al., “Adiposopathy and bariatric surgery: is 'sick fat' a surgical disease?” International Journal of Clinical Practice, vol. 63, no. 9, pp. 1285–1300, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. A. A. Gumbs, I. M. Modlin, and G. H. Ballantyne, “Changes in insulin resistance following bariatric surgery: role of caloric restriction and weight loss,” Obesity Surgery, vol. 15, no. 4, pp. 462–473, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Rubino, P. R. Schauer, L. M. Kaplan, and D. E. Cummings, “Metabolic surgery to treat type 2 diabetes: clinical outcomes and mechanisms of action,” Annual Review of Medicine, vol. 61, pp. 393–411, 2010. View at Publisher · View at Google Scholar
  7. L. Johansson, M. Roos, J. Kullberg et al., “Lipid mobilization following Roux-en-Y gastric bypass examined by magnetic resonance imaging and spectroscopy,” Obesity Surgery, vol. 18, no. 10, pp. 1297–1304, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. D. E. Kelley, T. M. McKolanis, R. A. F. Hegazi, L. H. Kuller, and S. C. Kalhana, “Fatty liver in type 2 diabetes mellitus: relation to regional adiposity, fatty acids, and insulin resistance,” American Journal of Physiology, vol. 285, no. 4, pp. E906–E916, 2003. View at Google Scholar · View at Scopus
  9. H. Yki-Jarvinen, “Fat in the liver and insulin resistance,” Annals of Medicine, vol. 37, no. 5, pp. 347–356, 2005. View at Google Scholar
  10. R. C. Liu, A. A. Sabnis, C. Forsyth, and B. Chand, “The effects of acute preoperative weight loss on laparoscopic Roux-en-Y gastric bypass,” Obesity Surgery, vol. 15, no. 10, pp. 1396–1402, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. R. S. Alami, J. M. Morton, R. Schuster et al., “Is there a benefit to preoperative weight loss in gastric bypass patients? A prospective randomized trial,” Surgery for Obesity and Related Diseases, vol. 3, no. 2, pp. 141–145, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Sundbom and S. Gustavsson, “Randomized clinical trial of hand-assisted laparoscopic versus open Roux-en-Y gastric bypass for the treatment of morbid obesity,” British Journal of Surgery, vol. 91, no. 4, pp. 418–423, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. K. E. Wildenhoff, “A micro-method for the enzymatic determination of acetoacetate and 3-hydroxybutyrate in blood and urine,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 25, no. 2, pp. 171–179, 1970. View at Google Scholar · View at Scopus
  14. C. Holdstock, B. E. Engström, M. Öhrvall, L. Lind, M. Sundbom, and F. A. Karlsson, “Ghrelin and adipose tissue regulatory peptides: effect of gastric bypass surgery in obese humans,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 7, pp. 3177–3183, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. D. R. Matthews, J. P. Hosker, A. S. Rudenski, B. A. Naylor, D. F. Treacher, and R. C. Turner, “Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man,” Diabetologia, vol. 28, no. 7, pp. 412–419, 1985. View at Google Scholar
  16. J. Kullberg, L. Johansson, H. Ahlström et al., “Automated assessment of whole-body adipose tissue depots from continuously moving bed MRI: a feasibility study,” Journal of Magnetic Resonance Imaging, vol. 30, no. 1, pp. 185–193, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Berglund, L. Johansson, H. Ahlström, and J. Kullberg, “Three-point Dixon method enables whole-body water and fat imaging of obese subjects,” Magnetic Resonance in Medicine, vol. 63, no. 6, pp. 1659–1668, 2010. View at Publisher · View at Google Scholar
  18. A. Naressi, C. Couturier, J. M. Devos et al., “Java-based graphical user interface for the MRUI quantitation package,” Magnetic Resonance Materials in Physics, Biology and Medicine, vol. 12, no. 2-3, pp. 141–152, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Vanhamme, A. Van Den Boogaart, and S. Van Huffel, “Improved method for accurate and efficient quantification of MRS data with use of prior knowledge,” Journal of Magnetic Resonance, vol. 129, no. 1, pp. 35–43, 1997. View at Google Scholar · View at Scopus
  20. F. Carrasco, K. Papapietro, A. Csendes et al., “Changes in resting energy expenditure and body composition after weight loss following Roux-en-Y gastric bypass,” Obesity Surgery, vol. 17, no. 5, pp. 608–616, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Bobbioni-Harsch, O. Huber, PH. Morel et al., “Factors influencing energy intake and body weight loss after gastric bypass,” European Journal of Clinical Nutrition, vol. 56, no. 6, pp. 551–556, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. R. T. Wang, R. L. Koretz, and H. F. Yee Jr., “Is weight reduction an effective therapy for nonalcoholic fatty liver? A systematic review,” American Journal of Medicine, vol. 115, no. 7, pp. 554–559, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Friis, N. D. Vaziri, F. Akbarpour, and A. Afrasiabi, “Effect of rapid weight loss with supplemented fasting on liver tests,” Journal of Clinical Gastroenterology, vol. 9, no. 2, pp. 204–207, 1987. View at Google Scholar · View at Scopus
  24. C. Gasteyger, T. M. Larsen, F. Vercruysse, and A. Astrup, “Effect of a dietary-induced weight loss on liver enzymes in obese subjects,” American Journal of Clinical Nutrition, vol. 87, no. 5, pp. 1141–1147, 2008. View at Google Scholar · View at Scopus
  25. M. C. Ryan, F. Abbasi, C. Lamendola, S. Carter, and T. L. McLaughlin, “Serum alanine aminotransferase levels decrease further with carbohydrate than fat restriction in insulin-resistant adults,” Diabetes Care, vol. 30, no. 5, pp. 1075–1080, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. M. A. Van Baak, “The peripheral sympathetic nervous system in human obesity,” Obesity Reviews, vol. 2, no. 1, pp. 3–14, 2001. View at Google Scholar · View at Scopus
  27. A. L. Birkenfeld, P. Budziarek, M. Boschmann et al., “Atrial natriuretic peptide induces postprandial lipid oxidation in humans,” Diabetes, vol. 57, no. 12, pp. 3199–3204, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. B. E. Engström, P. Burman, C. Holdstock, M. Öhrvall, M. Sundbom, and F. A. Karlsson, “Effects of gastric bypass on the GH/IGF-I axis in severe obesity—and a comparison with GH deficiency,” European Journal of Endocrinology, vol. 154, no. 1, pp. 53–59, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. M. H. Rasmussen, A. Hvidberg, A. Juul et al., “Massive weight loss restores 24-hour growth hormone release profiles and serum insulin-like growth factor-I levels in obese subjects,” Journal of Clinical Endocrinology and Metabolism, vol. 80, no. 4, pp. 1407–1415, 1995. View at Google Scholar · View at Scopus
  30. R. Nogueiras, D. Pérez-Tilve, C. Veyrat-Durebex et al., “Direct control of peripheral lipid deposition by CNS GLP-1 receptor signaling is mediated by the sympathetic nervous system and blunted in diet-induced obesity,” Journal of Neuroscience, vol. 29, no. 18, pp. 5916–5925, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Morínigo, V. Moizé, M. Musri et al., “Glucagon-like peptide-1, peptide YY, hunger, and satiety after gastric bypass surgery in morbidly obese subjects,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 5, pp. 1735–1740, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. J. E. Gerich, M. Lorenzi, and D. M. Bier, “Effects of physiologic levels of glucagon and growth hormone on human carbohydrate and lipid metabolism. Studies involving administration of exogenous hormone during suppression of endogenous hormone secretion with somatostatin,” Journal of Clinical Investigation, vol. 57, no. 4, pp. 875–884, 1976. View at Google Scholar · View at Scopus
  33. “Glucagon and Lipid Metabolism,” in Glucagon: Molecular Physiology, Clinical and Therapeutic Implications, P. H. Lefèbvre and R. H. Unger, Eds., Pergammon, New York, NY, USA, 1972.
  34. A. B. Goldfine, E. C. Mun, E. Devine et al., “Patients with neuroglycopenia after gastric bypass surgery have exaggerated incretin and insulin secretory responses to a mixed meal,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 12, pp. 4678–4685, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. B. Laferrère, J. Teixeira, J. McGinty et al., “Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 7, pp. 2479–2485, 2008. View at Publisher · View at Google Scholar · View at Scopus