Table of Contents Author Guidelines Submit a Manuscript
Journal of Obesity
Volume 2012, Article ID 147385, 10 pages
http://dx.doi.org/10.1155/2012/147385
Review Article

Blood Pressure Control at Rest and during Exercise in Obese Children and Adults

1Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110 Serres, Greece
2Department of Sport Medicine and Biology of Exercise, Faculty of Physical Education and Sport Science, University of Athens, 17237 Daphne, Greece

Received 30 November 2011; Revised 19 February 2012; Accepted 1 March 2012

Academic Editor: David John Stensel

Copyright © 2012 Konstantina Dipla et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. American College of Sports Medicine, Acsm's Guidelines for Exercise Testing and Prescription, Wolters Clover Lippincott Williams & Willkins, Philadelphia, Pa, USA, 2010.
  2. L. S. Pescatello, B. A. Franklin, R. Fagard, W. B. Farquhar, G. A. Kelley, and C. A. Ray, “American College of Sports Medicine position stand. Exercise and hypertension.,” Medicine and science in sports and exercise, vol. 36, no. 3, pp. 533–553, 2004. View at Google Scholar · View at Scopus
  3. N. Miyai, M. Arita, K. Miyashita, I. Morioka, T. Shiraishi, and I. Nishio, “Blood pressure response to heart rate during exercise test and risk of future hypertension,” Hypertension, vol. 39, no. 3, pp. 761–766, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Filipovsky, P. Ducimetiere, and M. E. Safar, “Prognostic significance of exercise blood pressure and heart rate in middle-aged men,” Hypertension, vol. 20, no. 3, pp. 333–339, 1992. View at Google Scholar · View at Scopus
  5. R. Mundal, S. E. Kjeldsen, L. Sandvik, G. Erikssen, E. Thaulow, and J. Erikssen, “Exercise blood pressure predicts cardiovascular mortality in middle-aged men,” Hypertension, vol. 24, no. 1, pp. 56–62, 1994. View at Google Scholar · View at Scopus
  6. R. Mundal, S. E. Kjeldsen, L. Sandvik, G. Erikssen, E. Thaulow, and J. Erikssen, “Exercise blood pressure predicts mortality from myocardial infarction,” Hypertension, vol. 27, no. 3 I, pp. 324–329, 1996. View at Google Scholar · View at Scopus
  7. N. Miyai, M. Arita, I. Morioka, S. Takeda, and K. Miyashita, “Ambulatory blood pressure, sympathetic activity, and left ventricular structure and function in middle-aged normotensive men with exaggerated blood pressure response to exercise,” Medical Science Monitor, vol. 11, no. 10, pp. CR478–CR484, 2005. View at Google Scholar · View at Scopus
  8. D. A. Cunningham, P. A. Rechnitzer, J. H. Howard, and A. P. Donner, “Exercise training of men at retirement: a clinical trial,” Journals of Gerontology, vol. 42, no. 1, pp. 17–23, 1987. View at Google Scholar · View at Scopus
  9. V. K. Somers, J. Conway, A. Coats, J. Isea, and P. Sleight, “Postexercise hypotension is not sustained in normal and hypertensive humans,” Hypertension, vol. 18, no. 2, pp. 211–215, 1991. View at Google Scholar · View at Scopus
  10. A. Figueroa, T. Baynard, B. Fernhall, R. Carhart, and J. A. Kanaley, “Impaired postexercise cardiovascular autonomic modulation in middle-aged women with type 2 diabetes,” European Journal of Cardiovascular Prevention and Rehabilitation, vol. 14, no. 2, pp. 237–243, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. S. S. Sawada, I. M. Lee, T. Muto, K. Matuszaki, and S. N. Blair, “Cardiorespiratory fitness and the incidence of type 2 diabetes: prospective study of Japanese men,” Diabetes Care, vol. 26, no. 10, pp. 2918–2922, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Sawada, H. Tanaka, M. Funakoshi, M. Shindo, S. Kono, and T. Ishiko, “Five year prospective study on blood pressure and maximal oxygen uptake,” Clinical and Experimental Pharmacology and Physiology, vol. 20, no. 7-8, pp. 483–487, 1993. View at Google Scholar · View at Scopus
  13. G. E. Alvarez, J. R. Halliwill, T. P. Ballard, S. D. Beske, and K. P. Davy, “Sympathetic neural regulation in endurance-trained humans: fitness vs. fatness,” Journal of Applied Physiology, vol. 98, no. 2, pp. 498–502, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Carletti, A. N. Rodrigues, A. J. Perez, and D. V. Vassallo, “Blood pressure response to physical exertion in adolescents: influence of overweight and obesity,” Arquivos Brasileiros de Cardiologia, vol. 91, no. 1, pp. 25–30, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Dipla, A. Zafeiridis, I. Koidou, N. Geladas, and I. S. Vrabas, “Altered hemodynamic regulation and reflex control during exercise and recovery in obese boys,” American Journal of Physiology, vol. 299, no. 6, pp. H2090–H2096, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Matsukawa, “Central command: control of cardiac sympathetic and vagal efferent nerve activity and the arterial baroreflex during spontaneous motor behaviour in animals,” Experimental Physiology, vol. 97, pp. 20–28, 2012. View at Google Scholar
  17. J. W. Williamson, P. J. Fadel, and J. H. Mitchell, “New insights into central cardiovascular control during exercise in humans: a central command update,” Experimental Physiology, vol. 91, no. 1, pp. 51–58, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. J. H. Mitchell, M. P. Kaufman, and G. A. Iwamoto, “The exercise pressor reflex: its cardiovascular effects, afferent mechanisms, and central pathways.,” Annual Review of Physiology, vol. 45, pp. 229–242, 1983. View at Google Scholar · View at Scopus
  19. M. J. Joyner, “Baroreceptor function during exercise: resetting the record,” Experimental Physiology, vol. 91, no. 1, pp. 27–36, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. M. P. Kaufman, T. G. Waldrop, K. J. Rybicki, G. A. Ordway, and J. H. Mitchell, “Effects of static and rhythmic twitch contractions on the discharge of group iii and iv muscle afferents,” Cardiovascular Research, vol. 18, pp. 663–668, 1984. View at Google Scholar
  21. M. P. Kaufman and S. G. Hayes, “The exercise pressor reflex,” Clinical Autonomic Research, vol. 12, no. 6, pp. 429–439, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. D. S. O'Leary, “Autonomic mechanisms of muscle metaboreflex control of heart rate,” Journal of Applied Physiology, vol. 74, no. 4, pp. 1748–1754, 1993. View at Google Scholar · View at Scopus
  23. D. S. O'Leary, “Heart rate control during exercise by baroreceptors and skeletal muscle afferents,” Medicine and Science in Sports and Exercise, vol. 28, no. 2, pp. 210–217, 1996. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Nowak, S. Holm, F. Biering-Sørensen, N. H. Secher, and L. Friberg, “‘Central command’ and insular activation during attempted foot lifting in paraplegic humans,” Human Brain Mapping, vol. 25, no. 2, pp. 259–265, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Nowak, K. S. Olsen, I. Law, S. Holm, O. B. Paulson, and N. H. Secher, “Command-related distribution of regional cerebral blood flow during attempted handgrip,” Journal of Applied Physiology, vol. 86, no. 3, pp. 819–824, 1999. View at Google Scholar · View at Scopus
  26. P. J. Fadel, “Arterial baroreflex control of the peripheral vasculature in humans: rest and exercise,” Medicine and Science in Sports and Exercise, vol. 40, no. 12, pp. 2055–2062, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. M. P. Kaufman, K. J. Rybicki, T. G. Waldrop, and J. H. Mitchell, “Effect on arterial pressure of rhythmically contracting the hindlimb muscles of cats,” Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, vol. 56, no. 5, pp. 1265–1271, 1984. View at Google Scholar · View at Scopus
  28. M. P. Kaufman and K. J. Rybicki, “Discharge properties of group III and IV muscle afferents: their responses to mechanical and metabolic stimuli.,” Circulation Research, vol. 61, no. 4, pp. I60–65, 1987. View at Google Scholar · View at Scopus
  29. R. G. Victor, L. A. Bertocci, S. L. Pryor, and R. L. Nunnally, “Sympathetic nerve discharge is coupled to muscle pH during exercise in humans,” Journal of Clinical Investigation, vol. 82, no. 4, pp. 1301–1305, 1988. View at Google Scholar · View at Scopus
  30. L. I. Sinoway, K. J. Wroblewski, S. A. Prophet et al., “Glycogen depletion-induced lactate reductions attenuate reflex responses in exercising humans,” American Journal of Physiology, vol. 263, no. 5, pp. H1499–H1505, 1992. View at Google Scholar · View at Scopus
  31. D. M. Rotto, C. L. Stebbins, and M. P. Kaufman, “Reflex cardiovascular and ventilatory responses to increasing H+ activity in cat hindlimb muscle,” Journal of Applied Physiology, vol. 67, no. 1, pp. 256–263, 1989. View at Google Scholar · View at Scopus
  32. M. Fischer and S. S. Schäfer, “Effects of changes in pH on the afferent impulse activity of isolated cat muscle spindles,” Brain Research, vol. 1043, no. 1-2, pp. 163–178, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. S. G. Hayes, A. E. Kindig, and M. P. Kaufman, “Blockade of acid sensing ion channels attenuates the exercise pressor reflex in cats,” Journal of Physiology, vol. 581, no. 3, pp. 1271–1282, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Esler, G. Lambert, M. Vaz et al., “Central nervous system monoamine neurotransmitter turnover in primary and obesity-related human hypertension,” Clinical and Experimental Hypertension, vol. 19, no. 5-6, pp. 577–590, 1997. View at Google Scholar · View at Scopus
  35. G. Grassi, B. M. Cattaneo, G. Seravalle, M. Colombo, F. Cavagnini, and G. Mancia, “Obesity and the sympathetic nervous system,” Blood Pressure, Supplement, vol. 5, no. 1, pp. 43–46, 1996. View at Google Scholar · View at Scopus
  36. “Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task force of the european society of cardiology and the north american society of pacing and electrophysiology,” European Heart Journal, vol. 17, pp. 354–381, 1996.
  37. M. P. Tulppo, T. H. Makikallio, T. E. Takala, T. Seppanen, and H. V. Huikuri, “Quantitative beat-to-beat analysis of heart rate dynamics during exercise,” American Journal of Physiology, vol. 271, pp. H244–H252, 1996. View at Google Scholar
  38. K. P. Davy and J. S. Orr, “Sympathetic nervous system behavior in human obesity,” Neuroscience and Biobehavioral Reviews, vol. 33, no. 2, pp. 116–124, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. G. A. Bray, “Obesity—a state of reduced sympathetic activity and normal or high adrenal activity (the autonomic and adrenal hypothesis revisited),” International Journal of Obesity, vol. 14, no. 3, pp. 77–91, 1990. View at Google Scholar · View at Scopus
  40. K. P. Davy and J. E. Halle, “Obesity and hypertension: two epidemics or one?” American Journal of Physiology, vol. 286, no. 5, pp. R803–R813, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. M. S. Rumantir, M. Vaz, G. L. Jennings et al., “Neural mechanisms in human obesity-related hypertension,” Journal of Hypertension, vol. 17, no. 8, pp. 1125–1133, 1999. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Vaz, G. Jennings, A. Turner, H. Cox, G. Lambert, and M. Esler, “Regional sympathetic nervous activity and oxygen consumption in obese normotensive human subjects,” Circulation, vol. 96, no. 10, pp. 3423–3429, 1997. View at Google Scholar · View at Scopus
  43. S. W. Coppack, J. F. Horowitz, D. S. Paramore, P. E. Cryer, H. D. Royal, and S. Klein, “Whole body, adipose tissue, and forearm norepinephrine kinetics in lean and obese women,” American Journal of Physiology, vol. 275, no. 5, pp. E830–E834, 1998. View at Google Scholar · View at Scopus
  44. G. E. Alvarez, S. D. Beske, T. P. Ballard, and K. P. Davy, “Sympathetic neural activation in visceral obesity,” Circulation, vol. 106, no. 20, pp. 2533–2536, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. P. P. Jones, S. Snitker, J. S. Skinner, and E. Ravussin, “Gender differences in muscle sympathetic nerve activity: effect of body fat distribution,” American Journal of Physiology, vol. 270, no. 2, pp. E363–E366, 1996. View at Google Scholar · View at Scopus
  46. L. J. Prior, N. Eikelis, J. A. Armitage et al., “Exposure to a high-fat diet alters leptin sensitivity and elevates renal sympathetic nerve activity and arterial pressure in rabbits,” Hypertension, vol. 55, no. 4, pp. 862–868, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. E. Shinohara, S. Kihara, S. Yamashita et al., “Visceral fat accumulation as an important risk factor for obstructive sleep apnoea syndrome in obese subjects,” Journal of Internal Medicine, vol. 241, no. 1, pp. 11–18, 1997. View at Google Scholar · View at Scopus
  48. A. N. Vgontzas, “Does obesity play a major role in the pathogenesis of sleep apnoea and its associated manifestations via inflammation, visceral adiposity, and insulin resistance?” Archives of Physiology and Biochemistry, vol. 114, no. 4, pp. 211–223, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. J. C. M. Lam, A. Xu, S. Tam et al., “Hypoadiponectinemia is related to sympathetic activation and severity of obstructive sleep apnea,” Sleep, vol. 31, no. 12, pp. 1721–1727, 2008. View at Google Scholar · View at Scopus
  50. A. Abbas, L. S. Szczepaniak, M. Tuncel et al., “Adiposity-independent sympathetic activity in black men,” Journal of Applied Physiology, vol. 108, no. 6, pp. 1613–1618, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. G. E. Alvarez, T. P. Ballard, S. D. Beske, and K. P. Davy, “Subcutaneous obesity is not associated with sympathetic neural activation,” American Journal of Physiology, vol. 287, no. 1, pp. H414–H418, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. G. Paolisso, D. Manzella, M. R. Rizzo et al., “Effects of insulin on the cardiac autonomic nervous system in insulin-resistant states,” Clinical Science, vol. 98, no. 2, pp. 129–136, 2000. View at Google Scholar · View at Scopus
  53. M. Emdin, A. Gastaldelli, E. Muscelli et al., “Hyperinsulinemia and autonomic nervous system dysfunction in obesity: effects of weight loss,” Circulation, vol. 103, no. 4, pp. 513–519, 2001. View at Google Scholar · View at Scopus
  54. S. Engeli and A. M. Sharma, “The renin-angiotensin system and natriuretic peptides in obesity-associated hypertension,” Journal of Molecular Medicine, vol. 79, no. 1, pp. 21–29, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. C. M. Boustany, K. Bharadwaj, A. Daugherty, D. R. Brown, D. C. Randall, and L. A. Cassis, “Activation of the systemic and adipose renin-angiotensin system in rats with diet-induced obesity and hypertension,” American Journal of Physiology, vol. 287, no. 4, pp. R943–R949, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. K. Rahmouni, M. L. G. Correia, W. G. Haynes, and A. L. Mark, “Obesity-associated hypertension: new insights into mechanisms,” Hypertension, vol. 45, no. 1, pp. 9–14, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. E. V. Menshikova, V. B. Ritov, F. G. Toledo, R. E. Ferrell, B. H. Goodpaster, and D. E. Kelley, “Effects of weight loss and physical activity on skeletal muscle mitochondrial function in obesity,” American Journal of Physiology, vol. 288, pp. E818–E825, 2005. View at Google Scholar
  58. F. G. S. Toledo, S. Watkins, and D. E. Kelley, “Changes induced by physical activity and weight loss in the morphology of intermyofibrillar mitochondria in obese men and women,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 8, pp. 3224–3227, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. G. Grassi, F. Arenare, F. Quarti-Trevano, G. Seravalle, and G. Mancia, “Heart rate, sympathetic cardiovascular influences, and the metabolic syndrome,” Progress in Cardiovascular Diseases, vol. 52, no. 1, pp. 31–37, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Esler, M. Rumantir, D. Kaye, and G. Lambert, “The sympathetic neurobiology of essential hypertension: disparate influences of obesity, stress, and noradrenaline transporter dysfunction?” American Journal of Hypertension, vol. 14, no. 6, pp. 139S–146S, 2001. View at Google Scholar · View at Scopus
  61. M. Esler, M. Rumantir, G. Wiesner, D. Kaye, J. Hastings, and G. Lambert, “Sympathetic nervous system and insulin resistance: from obesity to diabetes,” American Journal of Hypertension, vol. 14, no. 11, pp. 304S–309S, 2001. View at Google Scholar · View at Scopus
  62. G. Grassi, R. Dell'Oro, F. Quarti-Trevano et al., “Neuroadrenergic and reflex abnormalities in patients with metabolic syndrome,” Diabetologia, vol. 48, no. 7, pp. 1359–1365, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. G. Grassi, G. Seravalle, M. Colombo et al., “Body weight reduction, sympathetic nerve traffic, and arterial baroreflex in obese normotensive humans,” Circulation, vol. 97, no. 20, pp. 2037–2042, 1998. View at Google Scholar · View at Scopus
  64. C. E. Negrão, I. C. Trombetta, L. T. Batalha et al., “Muscle metaboreflex control is diminished in normotensive obese women,” American Journal of Physiology, vol. 281, no. 2, pp. H469–H475, 2001. View at Google Scholar · View at Scopus
  65. F. H. S. Kuniyoshi, I. C. Trombetta, L. T. Batalha et al., “Abnormal neurovascular control during sympathoexcitation in obesity,” Obesity Research, vol. 11, no. 11, pp. 1411–1419, 2003. View at Google Scholar · View at Scopus
  66. L. Karpoff, A. Vinet, I. Schuster et al., “Abnormal vascular reactivity at rest and exercise in obese boys,” European Journal of Clinical Investigation, vol. 39, no. 2, pp. 94–102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. W. M. Sherman, A. L. Katz, C. L. Cutler, R. T. Withers, and J. L. Ivy, “Glucose transport: locus of muscle insulin resistance in obese Zucker rats,” American Journal of Physiology, vol. 255, no. 3, pp. E374–E382, 1988. View at Google Scholar · View at Scopus
  68. M. T. La Rovere, G. Specchia, A. Mortara, and P. J. Schwartz, “Baroreflex sensitivity, clinical correlates, and cardiovascular mortality among patients with a first myocardial infarction: a prospective study,” Circulation, vol. 78, no. 4 I, pp. 816–824, 1988. View at Google Scholar · View at Scopus
  69. I. Skrapari, N. Tentolouris, D. Perrea, C. Bakoyiannis, A. Papazafiropoulou, and N. Katsilambros, “Baroreflex sensitivity in obesity: relationship with cardiac autonomic nervous system activity,” Obesity, vol. 15, no. 7, pp. 1685–1693, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. N. M. Fardin, L. M. Oyama, and R. R. Campos, “Changes in baroreflex control of renal sympathetic nerve activity in high-fat-fed rats as a predictor of hypertension,” Obesity. In press.
  71. J. K. Limberg, M. D. De Vita, G. M. Blain, and W. G. Schrage, “Muscle blood flow responses to dynamic exercise in young obese humans,” Journal of Applied Physiology, vol. 108, no. 2, pp. 349–355, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. G. M. Blain, J. K. Limberg, G. F. Mortensen, and W. G. Schrage, “Rapid onset vasodilatation is blunted in obese humans,” Acta Physiologica, vol. 205, no. 1, pp. 103–112, 2012. View at Google Scholar
  73. B. L. Hodnett, L. Xiang, J. Dearman, C. Carter, and R. L. Hester, “KATP-mediated vasodilation is impaired in obese zucker rats,” Microcirculation, vol. 15, no. 6, pp. 485–494, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. M. L. Armstrong, A. K. Dua, and C. L. Murrant, “Potassium initiates vasodilatation induced by a single skeletal muscle contraction in hamster cremaster muscle,” Journal of Physiology, vol. 581, no. 2, pp. 841–852, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. I. C. Trombetta, L. T. Batalha, M. U. P. B. Rondon et al., “Weight loss improves neurovascular and muscle metaboreflex control in obesity,” American Journal of Physiology, vol. 285, no. 3, pp. H974–H982, 2003. View at Google Scholar · View at Scopus
  76. A. C. Tonacio, I. C. Trombetta, M. U. P. B. Rondon et al., “Effects of diet and exercise training on neurovascular control during mental stress in obese women,” Brazilian Journal of Medical and Biological Research, vol. 39, no. 1, pp. 53–62, 2006. View at Google Scholar · View at Scopus
  77. N. E. Straznicky, M. T. Grima, N. Eikelis et al., “The effects of weight loss versus weight loss maintenance on sympathetic nervous system activity and metabolic syndrome components,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 3, pp. E503–E508, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. J. P. Finley and S. T. Nugent, “Heart rate variability in infants, children and young adults,” Journal of the Autonomic Nervous System, vol. 51, no. 2, pp. 103–108, 1995. View at Publisher · View at Google Scholar · View at Scopus
  79. S. M. Pikkujamsa, T. H. Makikallio, L. B. Sourander et al., “Cardiac interbeat interval dynamics from childhood to senescence : comparison of conventional and new measures based on fractals and chaos theory,” Circulation, vol. 100, pp. 393–399, 1999. View at Google Scholar
  80. Z. Lenard, P. Studinger, B. Mersich, L. Kocsis, and M. Kollai, “Maturation of cardiovagal autonomic function from childhood to young adult age,” Circulation, vol. 110, no. 16, pp. 2307–2312, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. S. Goulopoulou, B. Fernhall, and J. A. Kanaley, “Developmental changes in hemodynamic responses and cardiovagal modulation during isometric handgrip exercise,” International Journal of Pediatrics, vol. 2010, Article ID 153780, 11 pages, 2010. View at Publisher · View at Google Scholar
  82. K. R. Turley, “The chemoreflex in young boys and girls,” International Journal of Sports Medicine, vol. 26, no. 2, pp. 96–101, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. M. Buchheit, H. Al-Haddad, A. Mendez-Villanueva, M. J. Quod, and P. C. Bourdon, “Effect of maturation on hemodynamic and autonomic control recovery following maximal running exercise in highly trained young soccer players,” Frontiers in Physiology, vol. 2, p. 69, 2011. View at Google Scholar
  84. A. Zafeiridis, A. Dalamitros, K. Dipla, V. Manou, N. Galanis, and S. Kellis, “Recovery during high-intensity intermittent anaerobic exercise in boys, teens, and men,” Medicine and Science in Sports and Exercise, vol. 37, no. 3, pp. 505–512, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. K. Dipla, T. Tsirini, A. Zafeiridis et al., “Fatigue resistance during high-intensity intermittent exercise from childhood to adulthood in males and females,” European Journal of Applied Physiology, vol. 106, no. 5, pp. 645–653, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. M. Buchheit, P. Duche, P. B. Laursen, and S. Ratel, “Postexercise heart rate recovery in children: relationship with power output, blood ph, and lactate,” Applied Physiology, Nutrition, and Metabolism, vol. 35, pp. 142–150, 2010. View at Google Scholar
  87. K. Jamerson and S. Julius, “Predictors of blood pressure and hypertension. General principles,” American Journal of Hypertension, vol. 4, no. 11, pp. 598S–602S, 1991. View at Google Scholar · View at Scopus
  88. M. M. Ribeiro, A. G. Silva, N. S. Santos et al., “Diet and exercise training restore blood pressure and vasodilatory responses during physiological maneuvers in obese children,” Circulation, vol. 111, no. 15, pp. 1915–1923, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. Z. Lazarova, I. Tonhajzerova, Z. Trunkvalterova et al., “Baroreflex sensitivity is reduced in obese normotensive children and adolescents,” Canadian Journal of Physiology and Pharmacology, vol. 87, pp. 565–571, 2009. View at Google Scholar
  90. A. P. Rocchini, C. Moorehead, V. Katch, J. Key, and K. M. Finta, “Forearm resistance vessel abnormalities and insulin resistance in obese adolescents,” Hypertension, vol. 19, no. 6, pp. 615–620, 1992. View at Google Scholar · View at Scopus
  91. Z. Pausova, M. Abrahamowicz, A. Mahboubi et al., “Functional variation in the androgen-receptor gene is associated with visceral adiposity and blood pressure in male adolescents,” Hypertension, vol. 55, no. 3, pp. 706–714, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. Z. Lénérd, P. Studinger, B. Mersich, G. Pavlik, and M. Kollai, “Cardiovagal autonomic function in sedentary and trained offspring of hypertensive parents,” Journal of Physiology, vol. 565, no. 3, pp. 1031–1038, 2005. View at Publisher · View at Google Scholar · View at Scopus
  93. J. W. Cavalcante, L. P. Cavalcante, W. S. Pacheco, M. G. de Menezes, and C. G. Gama Filho, “blood pressure responses in children of normotensive and of hypertensive parents treated with pressor stimulus,” Arquivos Brasileiros de Cardiologia, vol. 69, pp. 323–326, 1997. View at Google Scholar
  94. C. D. Legantis, G. P. Nassis, K. Dipla, I. S. Vrabas, L. S. Sidossis, and N. D. Geladas, “Role of cardiorespiratory fitness and obesity on hemodynamic responses in children,” The Journal of Sports Medicine and Physical Fitness. In press.
  95. S. Verlohren, G. Dubrovska, S. Y. Tsang et al., “Visceral periadventitial adipose tissue regulates arterial tone of mesenteric arteries,” Hypertension, vol. 44, no. 3, pp. 271–276, 2004. View at Publisher · View at Google Scholar · View at Scopus
  96. F. Dangardt, W. Osika, R. Volkmann, L. M. Gan, and P. Friberg, “Obese children show increased intimal wall thickness and decreased pulse wave velocity,” Clinical Physiology and Functional Imaging, vol. 28, no. 5, pp. 287–293, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. D. Felber-Dietrich, U. Ackermann Liebrich, C. Schindler et al., “Effect of physical activity on heart rate variability in normal weight, overweight and obese subjects: results from the sapaldia study,” European Journal of Applied Physiology, vol. 104, pp. 557–565, 2008. View at Google Scholar
  98. N. M. Hamburg, C. J. McMackin, A. L. Huang et al., “Physical inactivity rapidly induces insulin resistance and microvascular dysfunction in healthy volunteers,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 12, pp. 2650–2656, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. A. S. Kelly, R. J. Wetzsteon, D. R. Kaiser, J. Steinberger, A. J. Bank, and D. R. Dengel, “Inflammation, insulin, and endothelial function in overweight children and adolescents: the role of exercise,” Journal of Pediatrics, vol. 145, no. 6, pp. 731–736, 2004. View at Publisher · View at Google Scholar · View at Scopus
  100. G. P. Nassis, K. Papantakou, K. Skenderi et al., “Aerobic exercise training improves insulin sensitivity without changes in body weight, body fat, adiponectin, and inflammatory markers in overweight and obese girls,” Metabolism, vol. 54, no. 11, pp. 1472–1479, 2005. View at Publisher · View at Google Scholar · View at Scopus
  101. K. Watts, P. Beye, A. Siafarikas et al., “Exercise training normalizes vascular dysfunction and improves central adiposity in obese adolescents,” Journal of the American College of Cardiology, vol. 43, no. 10, pp. 1823–1827, 2004. View at Publisher · View at Google Scholar · View at Scopus
  102. R. A. Abbott, M. A. Harkness, and P. S. W. Davies, “Correlation of habitual physical activity levels with flow-mediated dilation of the brachial artery in 5-10 year old children,” Atherosclerosis, vol. 160, no. 1, pp. 233–239, 2002. View at Publisher · View at Google Scholar · View at Scopus
  103. N. D. Hopkins, G. Stratton, T. M. Tinken et al., “Relationships between measures of fitness, physical activity, body composition and vascular function in children,” Atherosclerosis, vol. 204, no. 1, pp. 244–249, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. D. M. Prado, A. G. Silva, I. C. Trombetta et al., “Exercise training associated with diet improves heart rate recovery and cardiac autonomic nervous system activity in obese children,” International Journal of Sports Medicine, vol. 31, no. 12, pp. 860–865, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. J. S. Harrell, A. Jessup, and N. Greene, “Changing our future: obesity and the metabolic syndrome in children and adolescents,” Journal of Cardiovascular Nursing, vol. 21, no. 4, pp. 322–330, 2006. View at Google Scholar · View at Scopus