Table of Contents Author Guidelines Submit a Manuscript
Journal of Obesity
Volume 2012 (2012), Article ID 483135, 9 pages
http://dx.doi.org/10.1155/2012/483135
Review Article

Nonalcoholic Fatty Liver Disease and Cardiovascular Disease: Has the Time Come for Cardiologists to Be Hepatologists?

1Department of Medicine, Wexham Park Hospital, Berkshire, Slough, UK
2National Center for GI & Liver Diseases, Ibn Sina Hospital, Ministry of Health, Khartoum, Sudan
3Department of Pathology, Faculty of Medicine, University of Medical Sciences and Technology, Khartoum, Sudan

Received 23 October 2012; Accepted 23 November 2012

Academic Editor: Mahir A. Hamad

Copyright © 2012 Mohamed H. Ahmed et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. H. Ahmed and C. D. Byrne, “Obstructive sleep apnea syndrome and fatty liver: association or causal link?” World Journal of Gastroenterology, vol. 16, no. 34, pp. 4243–4252, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. M. H. Ahmed and C. D. Byrne, “Non alcoholic steatatohepatitis and metabolic syndrome,” in Metabolic Syndrome, C. Byrne and S. Wild, Eds., pp. 279–305, John Wiley & Sons, Chichester, UK, 2005. View at Google Scholar
  3. J. D. Browning, L. S. Szczepaniak, R. Dobbins et al., “Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity,” Hepatology, vol. 40, no. 6, pp. 1387–1395, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. L. S. Szczepaniak, P. Nurenberg, D. Leonard et al., “Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population,” American Journal of Physiology, vol. 288, no. 2, pp. E462–E468, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Bellentani, G. Saccoccio, F. Masutti et al., “Prevalence of and risk factors for hepatic steatosis in Northern Italy,” Annals of Internal Medicine, vol. 132, no. 2, pp. 112–117, 2000. View at Google Scholar · View at Scopus
  6. B. Liu, A. Balkwill, G. Reeves, and V. Beral, “Body mass index and risk of liver cirrhosis in middle aged UK women: prospective study,” British Medical Journal, vol. 340, article c912, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. C. L. Hart, D. S. Morrison, G. D. Batty, R. J. Mitchell, and G. Davey Smith, “Effect of body mass index and alcohol consumption on liver disease: analysis of data from two prospective cohort studies,” British Medical Journal, vol. 340, article c1240, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. M. H. Ahmed and C. D. Byrne, “Metabolic syndrome, diabetes & CHD risk,” in The Year in Lipid Disorders, C. J. Packard, Ed., pp. 3–26, Clinical Publishing, Oxford, UK, 2007. View at Google Scholar
  9. H. J. Kim, H. J. Kim, K. E. Lee et al., “Metabolic significance of nonalcoholic fatty liver disease in nonobese, nondiabetic adults,” Archives of Internal Medicine, vol. 164, no. 19, pp. 2169–2175, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. J. B. Dixon, P. S. Bhathal, and P. E. O'Brien, “Nonalcoholic fatty liver disease: predictors of nonalcoholic steatohepatitis and liver fibrosis in the severely obese,” Gastroenterology, vol. 121, no. 1, pp. 91–100, 2001. View at Google Scholar · View at Scopus
  11. D. H. Akbar and A. H. Kawther, “Nonalcoholic fatty liver disease in Saudi type 2 diabetic subjects attending a medical outpatient clinic: prevalence and general characteristics,” Diabetes Care, vol. 26, no. 12, pp. 3351–3352, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. S. I. Kojima, N. Watanabe, M. Numata, T. Ogawa, and S. Matsuzaki, “Increase in the prevalence of fatty liver in Japan over the past 12 years: analysis of clinical background,” Journal of Gastroenterology, vol. 38, no. 10, pp. 954–961, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. J. G. Fan, J. Zhu, X. J. Li et al., “Fatty liver and the metabolic syndrome among Shanghai adults,” Journal of Gastroenterology and Hepatology, vol. 20, no. 12, pp. 1825–1832, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. J. G. Fan, J. Zhu, X. J. Li et al., “Prevalence of and risk factors for fatty liver in a general population of Shanghai, China,” Journal of Hepatology, vol. 43, no. 3, pp. 508–514, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. J. B. Schwimmer, R. Deutsch, T. Kahen, J. E. Lavine, C. Stanley, and C. Behling, “Prevalence of fatty liver in children and adolescents,” Pediatrics, vol. 118, no. 4, pp. 1388–1393, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Radetti, W. Kleon, J. Stuefer, and K. Pittschieler, “Non-alcoholic fatty liver disease in obese children evaluated by magnetic resonance imaging,” Acta Paediatrica, vol. 95, no. 7, pp. 833–837, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. M. H. Ahmed, “Biochemical markers: the road map for the diagnosis of nonalcoholic fatty liver disease,” American Journal of Clinical Pathology, vol. 127, no. 1, pp. 20–22, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. L. A. Adams, S. Harmsen, J. L. St Sauver et al., “Nonalcoholic fatty liver disease increases risk of death among patients with diabetes: a community-based cohort study,” American Journal of Gastroenterology, vol. 105, no. 7, pp. 1567–1573, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. P. H. Chiang, T. Y. Chang, and J. D. Chen, “Synergistic effect of fatty liver and smoking on metabolic syndrome,” World Journal of Gastroenterology, vol. 15, no. 42, pp. 5334–5339, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. K. G. M. M. Alberti, R. H. Eckel, S. M. Grundy et al., “Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; National heart, lung, and blood institute; American heart association; World heart federation; International atherosclerosis society; and international association for the study of obesity,” Circulation, vol. 120, no. 16, pp. 1640–1645, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Bedogni, L. Miglioli, F. Masutti, C. Tiribelli, G. Marchesini, and S. Bellentani, “Prevalence of and risk factors for nonalcoholic fatty liver disease: the dionysos nutrition and liver study,” Hepatology, vol. 42, no. 1, pp. 44–52, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Rocha, H. P. Cotrim, F. M. Carvalho, A. C. Siqueira, H. Braga, and L. A. Freitas, “Body mass index and waist circumference in non-alcoholic fatty liver disease,” Journal of Human Nutrition and Dietetics, vol. 18, no. 5, pp. 365–370, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Pagano, G. Pacini, G. Musso et al., “Nonalcoholic steatohepatitis, insulin resistance, and metabolic syndrome: further evidence for an etiologic association,” Hepatology, vol. 35, no. 2, pp. 367–372, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Rocha, H. P. Cotrim, F. M. Carvalho, A. C. Siqueira, H. Braga, and L. A. Freitas, “Body mass index and waist circumference in non-alcoholic fatty liver disease,” Journal of Human Nutrition and Dietetics, vol. 18, no. 5, pp. 365–370, 2005. View at Google Scholar
  25. S. Chitturi, S. Abeygunasekera, G. C. Farrell et al., “NASH and insulin resistance: insulin hypersecretion and specific association with the insulin resistance syndrome,” Hepatology, vol. 35, no. 2, pp. 373–379, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Gastaldelli, M. Kozakova, K. Höjlund et al., “Fatty liver is associated with insulin resistance, risk of coronary heart disease, and early atherosclerosis in a large European population,” Hepatology, vol. 49, no. 5, pp. 1537–1544, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Dam-Larsen, U. Becker, M. B. Franzmann, K. Larsen, P. Christoffersen, and F. Bendtsen, “Final results of a long-term, clinical follow-up in fatty liver patients,” Scandinavian Journal of Gastroenterology, vol. 44, no. 10, pp. 1236–1243, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. N. Alkhouri, T. A. R. Tamimi, L. Yerian, R. Lopez, N. N. Zein, and A. E. Feldstein, “The inflamed liver and atherosclerosis: a Link between histologic severity of nonalcoholic fatty liver disease and increased cardiovascular risk,” Digestive Diseases and Sciences, vol. 55, no. 9, pp. 2644–2650, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. J. P. Domanski, S. J. Park, and S. A. Harrison, “Cardiovascular disease and nonalcoholic fatty liver disease: does histologic severity matter?” Journal of Clinical Gastroenterology, vol. 46, no. 5, pp. 427–430, 2012. View at Google Scholar
  30. S. Ramilli, S. Pretolani, A. Muscari, B. Pacelli, and V. Arienti, “Carotid lesions in outpatients with nonalcoholic fatty liver disease,” World Journal of Gastroenterology, vol. 15, no. 38, pp. 4770–4774, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. A. J. McCullough, “The clinical features, diagnosis and natural history of nonalcoholic fatty liver disease,” Clinics in Liver Disease, vol. 8, no. 3, pp. 521–533, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. K. G. Tolman, V. Fonseca, M. H. Tan, and A. Dalpiaz, “Narrative review: hepatobiliary disease in type 2 diabetes mellitus,” Annals of Internal Medicine, vol. 141, no. 12, pp. 946–956, 2004. View at Google Scholar · View at Scopus
  33. P. Jousilahti, D. Rastenyte, and J. Tuomilehto, “Serum gamma-glutamyl transferase, self-reported alcohol drinking, and the risk of stroke,” Stroke, vol. 31, no. 8, pp. 1851–1855, 2000. View at Google Scholar · View at Scopus
  34. G. Wannamethee, S. Ebrahim, and A. G. Shaper, “Gamma-glutamyltransferase: determinants and association with mortality from ischemic heart disease and all causes,” American Journal of Epidemiology, vol. 142, no. 7, pp. 699–708, 1995. View at Google Scholar · View at Scopus
  35. M. Kozakova, C. Palombo, M. Paterni et al., “Fatty liver index, gamma-glutamyltransferase and early carotid plaques,” Hepatology, vol. 55, no. 5, pp. 1406–1415, 2012. View at Google Scholar
  36. R. K. Schindhelm, J. M. Dekker, G. Nijpels et al., “Alanine aminotransferase predicts coronary heart disease events: a 10-year follow-up of the Hoorn Study,” Atherosclerosis, vol. 191, no. 2, pp. 391–396, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. C. C. Wang, S. K. Lin, Y. F. Tseng et al., “Elevation of serum aminotransferase activity increases risk of carotid atherosclerosis in patients with non-alcoholic fatty liver disease,” Journal of Gastroenterology and Hepatology, vol. 24, no. 8, pp. 1411–1416, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. G. N. Ioannou, N. S. Weiss, E. J. Boyko, D. Mozaffarian, and S. P. Lee, “Elevated serum alanine aminotransferase activity and calculated risk of coronary heart disease in the United States,” Hepatology, vol. 43, no. 5, pp. 1145–1151, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Monami, G. Bardini, C. Lamanna et al., “Liver enzymes and risk of diabetes and cardiovascular disease: results of the Firenze Bagno a Ripoli (FIBAR) study,” Metabolism, vol. 57, no. 3, pp. 387–392, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Lopez-Suarez, J. M. Guerrero, J. Elvira-Gonzalez, M. Beltran-Robles, F. Canas-Hormigo, and A. Bascunana-Quirell, “Nonalcoholic fatty liver disease is associated with blood pressure in hypertensive and nonhypertensive individuals from the general population with normal levels of alanine aminotransferase,” European Journal of Gastroenterology and Hepatology, vol. 23, no. 11, pp. 1011–1017, 2011. View at Google Scholar
  41. M. Lazo, R. Hernaez, S. Bonekamp et al., “Non-alcoholic fatty liver disease and mortality among US adults: prospective cohort study,” British Medical Journal, vol. 343, article d6891, 2011. View at Google Scholar
  42. M. Stepanova and Z. M. Younossi, “Independent association between nonalcoholic fatty liver disease and cardiovascular disease in the US population,” Clinical Gastroenterology and Hepatology, vol. 10, no. 6, pp. 646–650, 2012. View at Google Scholar
  43. G. Targher, L. Bertolini, R. Padovani et al., “Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients,” Diabetes Care, vol. 30, no. 5, pp. 1212–1218, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. G. Targher, L. Bertolini, F. Poli et al., “Nonalcoholic fatty liver disease and risk of future cardiovascular events among type 2 diabetic patients,” Diabetes, vol. 54, no. 12, pp. 3541–3546, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. L. Pacifico, V. Cantisani, P. Ricci et al., “Nonalcoholic fatty liver disease and carotid atherosclerosis in children,” Pediatric Research, vol. 63, no. 4, pp. 423–427, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. J. B. Schwimmer, P. E. Pardee, J. E. Lavine, A. K. Blumkin, and S. Cook, “Cardiovascular risk factors and the metabolic syndrome in pediatric nonalcoholic fatty liver disease,” Circulation, vol. 118, no. 3, pp. 277–283, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. A. L. Fracanzani, L. Burdick, S. Raselli et al., “Carotid artery intima-media thickness in nonalcoholic fatty liver disease,” American Journal of Medicine, vol. 121, no. 1, pp. 72–78, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. G. Targher, L. Bertolini, R. Padovani et al., “Relations between carotid artery wall thickness and liver histology in subjects with nonalcoholic fatty liver disease,” Diabetes Care, vol. 29, no. 6, pp. 1325–1330, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. H. Völzke, D. M. Robinson, V. Kleine et al., “Hepatic steatosis is associated with an increased risk of carotid atherosclerosis,” World Journal of Gastroenterology, vol. 11, no. 12, pp. 1848–1853, 2005. View at Google Scholar · View at Scopus
  50. J. M. Petit, B. Guiu, B. Terriat et al., “Nonalcoholic fatty liver is not associated with carotid intima-media thickness in type 2 diabetic patients,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 10, pp. 4103–4106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. H. C. Kim, D. J. Kim, and K. B. Huh, “Association between nonalcoholic fatty liver disease and carotid intima-media thickness according to the presence of metabolic syndrome,” Atherosclerosis, vol. 204, no. 2, pp. 521–525, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. R. K. Schindhelm, M. Diamant, S. J. L. Bakker et al., “Liver alanine aminotransferase, insulin resistance and endothelial dysfunction in normotriglyceridaemic subjects with type 2 diabetes mellitus,” European Journal of Clinical Investigation, vol. 35, no. 6, pp. 369–374, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. N. Villanova, S. Moscatiello, S. Ramilli et al., “Endothelial dysfunction and cardiovascular risk profile in nonalcoholic fatty liver disease,” Hepatology, vol. 42, no. 2, pp. 473–480, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. V. T. Samuel, Z. X. Liu, X. Qu et al., “Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease,” Journal of Biological Chemistry, vol. 279, no. 31, pp. 32345–32353, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. D. Cai, M. Yuan, D. F. Frantz et al., “Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB,” Nature Medicine, vol. 11, no. 2, pp. 183–190, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. G. Musso, R. Gambino, F. De Michieli, M. Durazzo, G. Pagano, and M. Cassader, “Adiponectin gene polymorphisms modulate acute adiponectin response to dietary fat: possible pathogenetic role in NASH,” Hepatology, vol. 47, no. 4, pp. 1167–1177, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. C. Pagano, G. Soardo, W. Esposito et al., “Plasma adiponectin is decreased in nonalcoholic fatty liver disease,” European Journal of Endocrinology, vol. 152, no. 1, pp. 113–118, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. G. Targher, L. Bertolini, L. Scala, F. Poli, L. Zenari, and G. Falezza, “Decreased plasma adiponectin concentrations are closely associated with nonalcoholic hepatic steatosis in obese individuals,” Clinical Endocrinology, vol. 61, no. 6, pp. 700–703, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. T. Pischon, C. J. Girman, G. S. Hotamisligil, N. Rifai, F. B. Hu, and E. B. Rimm, “Plasma adiponectin levels and risk of myocardial infarction in Men,” Journal of the American Medical Association, vol. 291, no. 14, pp. 1730–1737, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. N. Matikainen, S. Mänttäri, J. Westerbacka et al., “Postprandial lipemia associates with liver fat content,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 8, pp. 3052–3059, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. H. Basciano, A. E. Miller, M. Naples et al., “Metabolic effects of dietary cholesterol in an animal model of insulin resistance and hepatic steatosis,” American Journal of Physiology, vol. 297, no. 2, pp. E462–E473, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. F. Hadaegh, H. Harati, A. Ghanbarian, and F. Azizi, “Prevalence of coronary heart disease among Tehran adults: Tehran Lipid and Glucose Study,” Eastern Mediterranean Health Journal, vol. 15, no. 1, pp. 157–166, 2009. View at Google Scholar · View at Scopus
  63. B. G. Nordestgaard, M. Benn, P. Schnohr, and A. Tybjaerg-Hansen, “Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women,” Journal of the American Medical Association, vol. 298, no. 3, pp. 299–308, 2007. View at Google Scholar
  64. S. Bansal, J. E. Buring, N. Rifai, S. Mora, F. M. Sacks, and P. M. Ridker, “Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women,” Journal of the American Medical Association, vol. 298, no. 3, pp. 309–316, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. J. J. Freiberg, A. Tybjærg-Hansen, J. S. Jensen, and B. G. Nordestgaard, “Nonfasting triglycerides and risk of ischemic stroke in the general population,” Journal of the American Medical Association, vol. 300, no. 18, pp. 2142–2152, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Mora, N. Rifai, J. E. Buring, and P. M. Ridker, “Fasting compared with nonfasting lipids and apolipoproteins for predicting incident cardiovascular events,” Circulation, vol. 118, no. 10, pp. 993–1001, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. D. Kim, S. Y. Choi, E. H. Park et al., “Nonalcoholic fatty liver disease is associated with coronary artery calcification,” Hepatology, vol. 56, no. 2, pp. 605–613, 2012. View at Google Scholar
  68. Y. Yilmaz, R. Kurt, O. Yonal et al., “Coronary flow reserve is impaired in patients with nonalcoholic fatty liver disease: association with liver fibrosis,” Atherosclerosis, vol. 211, no. 1, pp. 182–186, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Goland, S. Shimoni, T. Zornitzki et al., “Cardiac abnormalities as a new manifestation of nonalcoholic fatty liver disease: echocardiographic and tissue Doppler imaging assessment,” Journal of Clinical Gastroenterology, vol. 40, no. 10, pp. 949–955, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. S. Bonapace, G. Perseghin, G. Molon et al., “Nonalcoholic fatty liver disease is associated with left ventricular diastolic dysfunction in patients with type 2 diabetes,” Diabetes Care, vol. 35, no. 2, pp. 389–395, 2012. View at Google Scholar
  71. T. Young, M. Palta, J. Dempsey, J. Skatrud, S. Weber, and S. Badr, “The occurrence of sleep-disordered breathing among middle-aged adults,” The New England Journal of Medicine, vol. 328, no. 17, pp. 1230–1235, 1993. View at Publisher · View at Google Scholar · View at Scopus
  72. W. W. Flemons, D. Buysse, S. Redline et al., “Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. The Report of an American Academy of Sleep Medicine Task Force,” Sleep, vol. 22, no. 5, pp. 667–689, 1999. View at Google Scholar · View at Scopus
  73. C. D. Byrne, “Hypoxia and non-alcoholic fatty liver disease,” Clinical Science, vol. 118, no. 6, pp. 397–400, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Nishibayashi, M. Miyamoto, T. Miyamoto, K. Suzuki, and K. Hirata, “Correlation between severity of obstructive sleep apnea and prevalence of silent cerebrovascular lesions,” Journal of Clinical Sleep Medicine, vol. 4, no. 3, pp. 242–247, 2008. View at Google Scholar · View at Scopus
  75. Z. Dorkova, D. Petrasova, A. Molcanyiova, M. Popovnakova, and R. Tkacova, “Effects of continuous positive airway pressure on cardiovascular risk profile in patients with severe obstructive sleep apnea and metabolic syndrome,” Chest, vol. 134, no. 4, pp. 686–692, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. N. Takama and M. Kurabayashi, “Influence of untreated sleep-disordered breathing on the long-term prognosis of patients with cardiovascular disease,” American Journal of Cardiology, vol. 103, no. 5, pp. 730–734, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. V. Savransky, A. Nanayakkara, A. Vivero et al., “Chronic intermittent hypoxia predisposes to liver injury,” Hepatology, vol. 45, no. 4, pp. 1007–1013, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. V. Savransky, S. Bevans, A. Nanayakkara et al., “Chronic intermittent hypoxia causes hepatitis in a mouse model of diet-induced fatty liver,” American Journal of Physiology, vol. 293, no. 4, pp. G871–G877, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. F. Takayama, T. Egashira, H. Kawasaki et al., “A novel animal model of nonalcoholic steatohepatitis (NASH): hypoxemia enhances the development of NASH,” Journal of Clinical Biochemistry and Nutrition, vol. 45, no. 3, pp. 335–340, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. A. C. Piguet, D. Stroka, A. Zimmermann, and J. F. Dufour, “Hypoxia aggravates non-alcoholic steatohepatitis in mice lacking hepatocellular PTEN,” Clinical Science, vol. 118, no. 6, pp. 401–410, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. T. D. Bradley and J. S. Floras, “Obstructive sleep apnoea and its cardiovascular consequences,” The Lancet, vol. 373, no. 9657, pp. 82–93, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. E. C. Fletcher, R. D. DeBehnke, M. S. Lovoi, and A. B. Gorin, “Undiagnosed sleep apnea in patients with essential hypertension,” Annals of Internal Medicine, vol. 103, no. 2, pp. 190–195, 1985. View at Google Scholar · View at Scopus
  83. A. G. Logan, S. M. Perlikowski, A. Mente et al., “High prevalence of unrecognized sleep apnoea in drug-resistant hypertension,” Journal of Hypertension, vol. 19, no. 12, pp. 2271–2277, 2001. View at Publisher · View at Google Scholar · View at Scopus
  84. J. Börgel, B. M. Sanner, F. Keskin et al., “Obstructive sleep apnea and blood pressure: interaction between the blood pressure-lowering effects of positive airway pressure therapy and antihypertensive drugs,” American Journal of Hypertension, vol. 17, no. 12, pp. 1081–1087, 2004. View at Publisher · View at Google Scholar · View at Scopus
  85. Y. Peker, H. Kraiczi, J. Hedner, S. Löth, A. Johansson, and M. Bende, “An independent association between obstructive sleep apnoea and coronary artery disease,” European Respiratory Journal, vol. 14, no. 1, pp. 179–184, 1999. View at Publisher · View at Google Scholar · View at Scopus
  86. T. Mooe, K. A. Franklin, K. Holmström, T. Rabben, and U. Wiklund, “Sleep-disordered breathing and coronary artery disease: long-term prognosis,” American Journal of Respiratory and Critical Care Medicine, vol. 164, no. 10, pp. 1910–1913, 2001. View at Google Scholar · View at Scopus
  87. D. C. Good, J. Q. Henkle, D. Gelber, J. Welsh, and S. Verhulst, “Sleep-disordered breathing and poor functional outcome after stroke,” Stroke, vol. 27, no. 2, pp. 252–259, 1996. View at Google Scholar · View at Scopus
  88. Y. Kaneko, V. E. Hajek, V. Zivanovic, J. Raboud, and T. D. Bradley, “Relationship of sleep apnea to functional capacity and length of hospitalization following stroke,” Sleep, vol. 26, no. 3, pp. 293–297, 2003. View at Google Scholar · View at Scopus
  89. G. Targher, L. Bertolini, S. Rodella et al., “Non-alcoholic fatty liver disease is independently associated with an increased prevalence of chronic kidney disease and proliferative/laser-treated retinopathy in type 2 diabetic patients,” Diabetologia, vol. 51, no. 3, pp. 444–450, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. G. Targher, M. Chonchol, L. Bertolini et al., “Increased risk of CKD among type 2 diabetics with nonalcoholic fatty liver disease,” Journal of the American Society of Nephrology, vol. 19, no. 8, pp. 1564–1570, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. Y. Chang, S. Ryu, E. Sung et al., “Nonalcoholic fatty liver disease predicts chronic kidney disease in nonhypertensive and nondiabetic Korean men,” Metabolism, vol. 57, no. 4, pp. 569–576, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. N. Chalasani, Z. Younossi, J. E. Lavine et al., “The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association,” Hepatology, vol. 55, no. 6, pp. 2005–2023, 2012. View at Google Scholar
  93. D. E. Cohen, F. A. Anania, and N. Chalasani, “An assessment of statin safety by hepatologists,” American Journal of Cardiology, vol. 97, no. 8, pp. S77–S81, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. M. H. Ahmed and C. D. Byrne, “Current treatment of non-alcoholic fatty liver disease,” Diabetes, Obesity and Metabolism, vol. 11, no. 3, pp. 188–195, 2009. View at Publisher · View at Google Scholar · View at Scopus