Table of Contents Author Guidelines Submit a Manuscript
Journal of Obesity
Volume 2012, Article ID 852147, 7 pages
http://dx.doi.org/10.1155/2012/852147
Research Article

Do Motion Controllers Make Action Video Games Less Sedentary? A Randomized Experiment

1Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
2Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7294, USA
3Department of Health Behavior and Health Education, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7440, USA
4School of Journalism and Mass Communication, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3365, USA

Received 5 May 2011; Revised 10 August 2011; Accepted 16 August 2011

Academic Editor: Hollie Raynor

Copyright © 2012 Elizabeth J. Lyons et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. W. Dunstan, J. Salmon, G. N. Healy et al., “Association of television viewing with fasting and 2-h postchallenge plasma glucose levels in adults without diagnosed diabetes,” Diabetes Care, vol. 30, no. 3, pp. 516–522, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. U. Ekelund, S. Brage, K. Froberg et al., “TV viewing and physical activity are independently associated with metabolic risk in children: the European youth heart study,” PLoS Medicine, vol. 3, no. 12, Article ID e488, pp. 2449–2457, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. G. N. Healy, D. W. Dunstan, J. Salmon, J. E. Shaw, P. Z. Zimmet, and N. Owen, “Television time and continuous metabolic risk in physically active adults,” Medicine and Science in Sports and Exercise, vol. 40, no. 4, pp. 639–645, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. M. M. Carvalhal, M. C. Padez, P. A. Moreira, and V. M. Rosado, “Overweight and obesity related to activities in Portuguese children, 7–9 years,” European Journal of Public Health, vol. 17, no. 1, pp. 42–46, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Schneider, G. F. Dunton, and D. M. Cooper, “Media use and obesity in adolescent females,” Obesity, vol. 15, no. 9, pp. 2328–2335, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Lanningham-Foster, T. B. Jensen, R. C. Foster et al., “Energy expenditure of sedentary screen time compared with active screen time for children,” Pediatrics, vol. 118, no. 6, pp. e1831–e1835, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Maddison, C. Ni Mhurchu, A. Jull, Y. Jiang, H. Prapavessis, and A. Rodgers, “Energy expended playing video console games: an opportunity to increase children's physical activity?” Pediatric Exercise Science, vol. 19, no. 3, pp. 334–343, 2007. View at Google Scholar · View at Scopus
  8. L. Straker and R. Abbott, “Effect of screen-based media on energy expenditure and heart rate in 9- to 12-year-old children,” Pediatric Exercise Science, vol. 19, no. 4, pp. 459–471, 2007. View at Google Scholar · View at Scopus
  9. B. Tan, A. R. Aziz, K. Chua, and K. C. Teh, “Aerobic demands of the dance simulation game,” International Journal of Sports Medicine, vol. 23, no. 2, pp. 125–129, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Sell, T. Lillie, and J. Taylor, “Energy expenditure during physically interactive video game playing in male college students with different playing experience,” Journal of American College Health, vol. 56, no. 5, pp. 505–511, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. V. B. Unnithan, W. Houser, and B. Fernhall, “Evaluation of the energy cost of playing a dance simulation video game in overweight and non-overweight children and adolescents,” International Journal of Sports Medicine, vol. 27, no. 10, pp. 804–809, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. Entertainment Software Association, “Essential facts about the computer and video game industry,” 2010, http://www.theesa.com/facts/pdfs/ESA_Essential_Facts_2010.PDF.
  13. M. Slater, A. Steed, J. McCarthy, and F. Maringelli, “The influence of body movement on subjective presence in virtual environments,” Human Factors, vol. 40, no. 3, pp. 469–477, 1998. View at Google Scholar · View at Scopus
  14. E. J. Lyons, D. F. Tate, D. S. Ward, J. M. Bowling, K. M. Ribisl, and S. Kalyararaman, “Energy expenditure and enjoyment during video game play: differences by game type,” Medicine and Science in Sports and Exercise, vol. 43, no. 10, pp. 1987–1993, 2011. View at Publisher · View at Google Scholar
  15. W. A. IJsselsteijn, Y. A. W. de Kort, J. Westerink, M. De Jager, and R. Bonants, “Virtual fitness: stimulating exercise behavior through media technology,” Presence-Teleoperators and Virtual Environments, vol. 15, no. 6, pp. 688–698, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. E. McAuley, T. Duncan, and V. V. Tammen, “Psychometric properties of the intrinsic motivation inventory in a competitive sport setting: a confirmatory factor analysis,” Research Quarterly for Exercise and Sport, vol. 60, no. 1, pp. 48–58, 1989. View at Google Scholar · View at Scopus
  17. R. R. Pate, J. R. O'Neill, and F. Lobelo, “The evolving definition of "sedentary",” Exercise and Sport Sciences Reviews, vol. 36, no. 4, pp. 173–178, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Graves, G. Stratton, N. D. Ridgers, and N. T. Cable, “Energy expenditure in adolescents playing new generation computer games: cross sectional study,” British Medical Journal, vol. 335, no. 7633, pp. 1282–1284, 2007. View at Publisher · View at Google Scholar
  19. A. L. Penko and J. E. Barkley, “Motivation and physiologic responses of playing a physically interactive video game relative to a sedentary alternative in children,” Annals of Behavioral Medicine, vol. 39, no. 2, pp. 162–169, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. T. W. Zderic and M. T. Hamilton, “Physical inactivity amplifies the sensitivity of skeletal muscle to the lipid-induced downregulation of lipoprotein lipase activity,” Journal of Applied Physiology, vol. 100, no. 1, pp. 249–257, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. M. S. Tremblay, R. C. Colley, T. J. Saunders, G. N. Healy, and N. Owen, “Physiological and health implications of a sedentary lifestyle,” Applied Physiology, Nutrition and Metabolism, vol. 35, no. 6, pp. 725–740, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. G. N. Healy, D. W. Dunstan, J. Salmon et al., “Breaks in sedentary time: beneficial associations with metabolic risk,” Diabetes Care, vol. 31, no. 4, pp. 661–666, 2008. View at Google Scholar
  23. D. L. Graf, L. V. Pratt, C. N. Hester, and K. R. Short, “Playing active video games increases energy expenditure in children,” Pediatrics, vol. 124, no. 2, pp. 534–540, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Borusiak, A. Bouikidis, R. Liersch, and J. B. Russell, “Cardiovascular effects in adolescents while they are playing video games: a potential health risk factor?” Psychophysiology, vol. 45, no. 2, pp. 327–332, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. J. P. Chaput, T. Visby, S. Nyby et al., “Video game playing increases food intake in adolescents: a randomized crossover study,” American Journal of Clinical Nutrition, vol. 93, no. 6, pp. 1196–1203, 2011. View at Publisher · View at Google Scholar