Table of Contents Author Guidelines Submit a Manuscript
Journal of Obesity
Volume 2013 (2013), Article ID 937572, 8 pages
Research Article

Endocrine and Metabolic Signaling in Retroperitoneal White Adipose Tissue Remodeling during Cold Acclimation

1Department of Physiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, 11060 Belgrade, Serbia
2Faculty of Biology, Center for Electron Microscopy, University of Belgrade, 11000 Belgrade, Serbia

Received 4 December 2012; Revised 1 April 2013; Accepted 2 April 2013

Academic Editor: Francesco Saverio Papadia

Copyright © 2013 Aleksandra Jankovic et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The expression profiles of adiponectin, resistin, 5′-AMP-activated protein kinase α (AMPKα), hypoxia-inducible factor-1α (HIF-1α), and key enzymes of glucose and fatty acid metabolism and oxidative phosphorylation in rat retroperitoneal white adipose tissue (RpWAT) during 45-day cold acclimation were examined. After transient suppression on day 1, adiponectin protein level increased following sustained cold exposure. In parallel, on day 1, the protein level of HIF-1α was strongly induced and AMPKα suppressed, while afterwards the reverse was seen. What is more, after an initial decrease on day 1, a sequential increase in pyruvate dehydrogenase, acyl-CoA dehydrogenase, cytochrome c oxidase, and ATP synthase and a decrease in acetyl-CoA carboxylase (from day 3) were observed. Similar to adiponectin, protein level of resistin showed a biphasic profile: it increased after days 1, 3, and 7 and decreased below the control after 21 days of cold-acclimation. In summary, the data suggest that adiponectin and resistin are important integrators of RpWAT metabolic response and roles it plays during cold acclimation. It seems that AMPKα mediate adiponectin effects on metabolic remodeling RpWAT during cold acclimation.