Table of Contents Author Guidelines Submit a Manuscript
Journal of Obesity
Volume 2014, Article ID 383102, 12 pages
http://dx.doi.org/10.1155/2014/383102
Research Article

Complement Receptors C5aR and C5L2 Are Associated with Metabolic Profile, Sex Hormones, and Liver Enzymes in Obese Women Pre- and Postbariatric Surgery

Centre de Recherche de l’Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Y4332, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5

Received 6 December 2013; Accepted 5 February 2014; Published 26 March 2014

Academic Editor: Michel M. Murr

Copyright © 2014 Reza Rezvani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. S. Hotamisligil, “Inflammation and metabolic disorders,” Nature, vol. 444, no. 7121, pp. 860–867, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Ricklin, G. Hajishengallis, K. Yang, and J. D. Lambris, “Complement: a key system for immune surveillance and homeostasis,” Nature Immunology, vol. 11, no. 9, pp. 785–797, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Sahu and J. D. Lambris, “Structure and biology of complement protein C3, a connecting link between innate and acquired immunity,” Immunological Reviews, vol. 180, pp. 35–48, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. C. A. Alper, A. M. Johnson, A. G. Birtch, and F. D. Moore, “Human C°3: evidence for the liver as the primary site of synthesis,” Science, vol. 163, no. 3864, pp. 286–288, 1969. View at Google Scholar · View at Scopus
  5. R. C. Strunk, K. S. Kunke, and P. C. Giclas, “Human peripheral blood monocyte-derived macrophages produce haemolytically active C3 in vitro,” Immunology, vol. 49, no. 1, pp. 169–174, 1983. View at Google Scholar · View at Scopus
  6. A. I. Jacob, P. K. Goldberg, and N. Bloom, “Endotoxin and bacteria in portal blood,” Gastroenterology, vol. 72, no. 6, pp. 1268–1270, 1977. View at Google Scholar · View at Scopus
  7. A. Klos, A. J. Tenner, K. O. Johswich, R. R. Ager, E. S. Reis, and J. Köhl, “The role of the anaphylatoxins in health and disease,” Molecular Immunology, vol. 46, no. 14, pp. 2753–2766, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Roy, A. Gupta, A. Fisette et al., “C5a receptor deficiency alters energy utilization and fat storage,” PLoS ONE, vol. 8, no. 5, Article ID e62531, 2013. View at Google Scholar
  9. Y. Mamane, C. C. Chan, G. Lavallee et al., “The C3a anaphylatoxin receptor is a key mediator of insulin resistance and functions by modulating adipose tissue macrophage infiltration and activation,” Diabetes, vol. 58, no. 9, pp. 2006–2017, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Lim, A. Iyer, J. Y. Suen et al., “C5aR and C3aR antagonists each inhibit diet-induced obesity, metabolic dysfunction, and adipocyte and macrophage signaling,” The FASEB Journal, vol. 27, no. 2, pp. 822–831, 2013. View at Google Scholar
  11. C. W. Strey, M. Markiewski, D. Mastellos et al., “The proinflammatory mediators C3a and C5a are essential for liver regeneration,” Journal of Experimental Medicine, vol. 198, no. 6, pp. 913–923, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Bénard, B. J. Gonzalez, M.-T. Schouft et al., “Characterization of C3a and C5a receptors in rat cerebellar granule neurons during maturation: neuroprotective effect of C5a against apoptotic cell death,” Journal of Biological Chemistry, vol. 279, no. 42, pp. 43487–43496, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Cianflone, Z. Xia, and L. Y. Chen, “Critical review of acylation-stimulating protein physiology in humans and rodents,” Biochimica et Biophysica Acta, vol. 1609, no. 2, pp. 127–143, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Gauvreau, A. Gupta, A. Fisette et al., “Deficiency of C5L2 increases macrophage infiltration and alters adipose tissue function in mice,” PLoS ONE, vol. 8, no. 4, Article ID e60795, 2013. View at Google Scholar
  15. C. A. Williams, N. Schupf, and T. E. Hugli, “Anaphylatoxin C5a modulation of an alpha-adrenergic receptor system in the rat hypothalamus,” Journal of Neuroimmunology, vol. 9, no. 1-2, pp. 29–40, 1985. View at Google Scholar · View at Scopus
  16. S. A. Cain and P. N. Monk, “The orphan receptor C5L2 has high affinity binding sites for complement fragments C5a and C5a des-Arg74,” Journal of Biological Chemistry, vol. 277, no. 9, pp. 7165–7169, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Okinaga, D. Slattery, A. Humbles et al., “C5L2, a nonsignaling C5A binding protein,” Biochemistry, vol. 42, no. 31, pp. 9406–9415, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Johswich, M. Martin, J. Thalmann, C. Rheinheimer, P. N. Monk, and A. Klos, “Ligand specificity of the anaphylatoxin C5L2 receptor and its regulation on myeloid and epithelial cell lines,” Journal of Biological Chemistry, vol. 281, no. 51, pp. 39088–39095, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Rittirsch, M. A. Flierl, B. A. Nadeau et al., “Functional roles for C5a receptors in sepsis,” Nature Medicine, vol. 14, no. 5, pp. 551–557, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Kalant, S. A. Cain, M. Maslowska, A. D. Sniderman, K. Cianflone, and P. N. Monk, “The chemoattractant receptor-like protein C5L2 binds the C3a des-Arg77/acylation-stimulating protein,” Journal of Biological Chemistry, vol. 278, no. 13, pp. 11123–11129, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Kalant, R. MacLaren, W. Cui et al., “C5L2 is a functional receptor for acylation-stimulating protein,” Journal of Biological Chemistry, vol. 280, no. 25, pp. 23936–23944, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. W. Cui, M. Simaan, S. Laporte, R. Lodge, and K. Cianflone, “C5a- and ASP-mediated C5L2 activation, endocytosis and recycling are lost in S323I-C5L2 mutation,” Molecular Immunology, vol. 46, no. 15, pp. 3086–3098, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Paglialunga, P. Schrauwen, C. Roy et al., “Reduced adipose tissue triglyceride synthesis and increased muscle fatty acid oxidation in C5L2 knockout mice,” Journal of Endocrinology, vol. 194, no. 2, pp. 293–304, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Fisette, M. N. Munkonda, K. Oikonomopoulou, S. Paglialunga, J. D. Lambris, and K. Cianflone, “C5L2 receptor disruption enhances the development of diet-induced insulin resistance in mice,” Immunobiology, vol. 218, no. 1, pp. 127–133, 2013. View at Google Scholar
  25. A. Klos, E. Wende, K. J. Wareham et al., “International Union of Pharmacology. LVII. Complement peptide C5a, C4a, and C3a receptors,” Pharmacological Reviews, vol. 65, no. 1, pp. 500–543, 2013. View at Google Scholar
  26. P. Poursharifi, M. Lapointe, D. Petrin et al., “C5L2 and C5aR interaction in adipocytes and macrophages: insights into adipoimmunology,” Cellular Signalling, vol. 25, no. 4, pp. 910–918, 2013. View at Google Scholar
  27. D. E. Croker, R. Halai, D. P. Fairlie et al., “C5a, but not C5a-des Arg, induces upregulation of heteromer formation between complement C5a receptors C5aR and C5L2,” Immunology and Cell Biology, vol. 91, no. 10, pp. 625–633, 2013. View at Google Scholar
  28. S. Ghisletti, C. Meda, A. Maggi, and E. Vegeto, “17β-estradiol inhibits inflammatory gene expression by controlling NF-κB intracellular localization,” Molecular and Cellular Biology, vol. 25, no. 8, pp. 2957–2968, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Caliceti, G. Aquila, M. Pannella et al., “17β-estradiol enhances signalling mediated by VEGF-A-Delta-like ligand 4-notch1 axis in human endothelial cells,” PLoS ONE, vol. 8, no. 8, Article ID e71440, 2013. View at Google Scholar
  30. J. Pamidimukkala and M. Hay, “17β-estradiol inhibits angiotensin II activation of area postrema neurons,” The American Journal of Physiology—Heart and Circulatory Physiology, vol. 285, no. 4, pp. H1515–H1520, 2003. View at Google Scholar · View at Scopus
  31. C. Alexanderson, E. Stener-Victorin, J. Kullberg et al., “A single early postnatal estradiol injection affects morphology and gene expression of the ovary and parametrial adipose tissue in adult female rats,” Journal of Steroid Biochemistry and Molecular Biology, vol. 122, no. 1-3, pp. 82–90, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. I. Farkas, M. Sárvári, M. Aller et al., “Estrogen receptor alpha and beta differentially mediate C5aR agonist evoked Ca2+-influx in neurons through L-type voltage-gated Ca2+ channels,” Neurochemistry International, vol. 60, no. 6, pp. 631–639, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. I. Farkas, P. Varju, E. Szabo et al., “Estrogen enhances expression of the complement C5a receptor and the C5a-agonist evoked calcium influx in hormone secreting neurons of the hypothalamus,” Neurochemistry International, vol. 52, no. 4-5, pp. 846–856, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Wen, H. Wang, R. MacLaren, H. Lu, X.-F. Hu, and K. Cianflone, “Sex steroid hormones induce acylation stimulating protein resistance in 3T3-L1 adipocytes,” Journal of Cellular Biochemistry, vol. 105, no. 2, pp. 404–413, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. N. Wlazlo, M. M. van Greevenbroek, I. Ferreira et al., “Activated complement factor 3 is associated with liver fat and liver enzymes: the CODAM study,” European Journal of Clinical Investigation, vol. 43, no. 7, pp. 679–688, 2013. View at Google Scholar
  36. I. Bykov, M. Jauhiainen, V. M. Olkkonen et al., “Hepatic gene expression and lipid parameters in complement C3-/- mice that do not develop ethanol-induced steatosis,” Journal of Hepatology, vol. 46, no. 5, pp. 907–914, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. S. He, C. Atkinson, F. Qiao, K. Cianflone, X. Chen, and S. Tomlinson, “A complement-dependent balance between hepatic ischemia/reperfusion injury and liver regeneration in mice,” Journal of Clinical Investigation, vol. 119, no. 8, pp. 2304–2316, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. J. D. Smith, K. Cianflone, J. Martin, P. Poirier, T. L. Broderick, and M. Noël, “Plasma adipokine and hormone changes in mountaineers on ascent to 5300 meters,” Wilderness and Environmental Medicine, vol. 22, no. 2, pp. 107–114, 2011. View at Google Scholar
  39. C. E. Bamberg, C. R. Mackay, H. Lee et al., “The C5a receptor (C5aR) C5L2 is a modulator of C5aR-mediated signal transduction,” Journal of Biological Chemistry, vol. 285, no. 10, pp. 7633–7644, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. D. R. Ciocca and L. M. Roig, “Estrogen receptors in human nontarget tissues: Biological and clinical implications,” Endocrine Reviews, vol. 16, no. 1, pp. 35–62, 1995. View at Google Scholar · View at Scopus
  41. J. M. Lavoie and A. Pighon, “NAFLD, estrogens, and physical exercise: the animal model,” Journal of Nutrition and Metabolism, vol. 2012, Article ID 914938, 13 pages, 2012. View at Publisher · View at Google Scholar
  42. J. P. Camporez, F. R. Jornayvaz, H. Y. Lee et al., “Cellular mechanism by which estradiol protects female ovariectomized mice from high-fat diet-induced hepatic and muscle insulin resistance,” Endocrinology, vol. 154, no. 3, pp. 1021–1028, 2013. View at Google Scholar
  43. D. H. St-Pierre, K. Cianflone, J. Smith et al., “Change in plasma acylation stimulating protein during euglycaemic- hyperinsulinaemic clamp in overweight and obese postmenopausal women: a MONET study,” Clinical Endocrinology, vol. 70, no. 4, pp. 539–546, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Fisette, M. Lapointe, and K. Cianflone, “Obesity-inducing diet promotes acylation stimulating protein resistance,” Biochemical and Biophysical Research Communications, vol. 437, no. 3, pp. 403–407, 2013. View at Google Scholar
  45. Z. Xia, K. L. Stanhope, E. Digitale et al., “Acylation-stimulating protein (ASP)/complement C3adesArg deficiency results in increased energy expenditure in mice,” Journal of Biological Chemistry, vol. 279, no. 6, pp. 4051–4057, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. D. A. Mogilenko, I. V. Kudriavtsev, V. S. Shavva et al., “Peroxisome proliferator-activated receptor a positively regulates complement C3 expression but inhibits tumor necrosis factor a mediated activation of C3 gene in mammalian hepatic-derived cells,” Journal of Biological Chemistry, vol. 288, no. 3, pp. 1726–1738, 2013. View at Google Scholar
  47. M. S. Wright, N. J. Sund, and T. G. Abrahamsen, “Modulation of C3 gene expression in HepG2 human hepatoma cells,” Immunology Letters, vol. 76, no. 2, pp. 119–123, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Daveau, M. Benard, M. Scotte et al., “Expression of a functional C5a receptor in regenerating hepatocytes and its involvement in a proliferative signaling pathway in rat,” Journal of Immunology, vol. 173, no. 5, pp. 3418–3424, 2004. View at Google Scholar · View at Scopus
  49. G. Schlaf, M. Schmitz, E. Rothermel, K. Jungermann, H. L. Schieferdecker, and O. Götze, “Expression and induction of anaphylatoxin C5a receptors in the rat liver,” Histology and Histopathology, vol. 18, no. 1, pp. 299–308, 2003. View at Google Scholar · View at Scopus
  50. H. L. Schieferdecker, G. Schlaf, K. Jungermann, and O. Götze, “Functions of anaphylatoxin C5a in rat liver: direct and indirect actions on nonparenchymal and parenchymal cells,” International Immunopharmacology, vol. 1, no. 3, pp. 469–481, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Sun, Y. Guo, G. Zhao et al., “Complement and the alternative pathway play an important role in LPS/D-GalN-induced fulminant hepatic failure,” PLoS ONE, vol. 6, no. 11, Article ID e26838, 2011. View at Google Scholar · View at Scopus
  52. P. A. Ward and H. Gao, “Sepsis, complement and the dysregulated inflammatory response,” Journal of Cellular and Molecular Medicine, vol. 13, no. 10, pp. 4154–4160, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. S. P. Cordoba, C. Wang, R. Williams et al., “Gene array analysis of a rat model of liver transplant tolerance identifies increased complement C3 and the STAT-1/IRF-1 pathway during tolerance induction,” Liver Transplantation, vol. 12, no. 4, pp. 636–643, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. I. L. Bykov, A. Väkevä, H. A. Järveläinen, S. Meri, and K. O. Lindros, “Protective function of complement against alcohol-induced rat liver damage,” International Immunopharmacology, vol. 4, no. 12, pp. 1445–1454, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Recinos III, B. K. Carr, D. B. Bartos et al., “Liver gene expression associated with diet and lesion development in atherosclerosis-prone mice: induction of components of alternative complement pathway,” Physiological Genomics, vol. 19, pp. 131–142, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. I. Murray, P. J. Havel, A. D. Sniderman, and K. Cianflone, “Reduced body weight, adipose tissue, and leptin levels despite increased energy intake in female mice lacking acylation-stimulating protein,” Endocrinology, vol. 141, no. 3, pp. 1041–1049, 2000. View at Publisher · View at Google Scholar · View at Scopus
  57. S. S. Rensen, Y. Slaats, A. Driessen et al., “Activation of the complement system in human nonalcoholic fatty liver disease,” Hepatology, vol. 50, no. 6, pp. 1809–1817, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. Z. Yesilova, M. Ozata, C. Oktenli et al., “Increased acylation stimulating protein concentrations in nonalcoholic fatty liver disease are associated with insulin resistance,” The American Journal of Gastroenterology, vol. 100, no. 4, pp. 842–849, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. R. D. Ye, “Biased agonism in chemoattractant receptor signaling,” Journal of Leukocyte Biology, vol. 87, no. 6, pp. 959–961, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. M. J. Rabiet, E. Huet, and F. Boulay, “Complement component 5a receptor oligomerization and homologous receptor down-regulation,” Journal of Biological Chemistry, vol. 283, no. 45, pp. 31038–31046, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. N. J. Chen, C. Mirtsos, D. Suh et al., “C5L2 is critical for the biological activities of the anaphylatoxins C5a and C3a,” Nature, vol. 446, no. 7132, pp. 203–207, 2007. View at Publisher · View at Google Scholar · View at Scopus